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Abstract

We describe the development of computer classifiers for various types of coronas. In particular,
we were interested to develop an algorithm for detection of coronas of people in altered states of
consciousness (two-classes problem). Such coronas are known to have rings (double coronas),
special branch-like structure of streamers and/or curious spots. Besides detecting altered states of
consciousness we were interested also to classify various types of coronas (six-classes problem). 
     We used several approaches to parametrization of images: statistical approach, principal
component analysis, association rules and GDV software approach extended with several
additional parameters. For the development of the classifiers we used various machine learning
algorithms: learning of decision trees, naïve Bayesian classifier, K-nearest neighbors classifier,
Support vector machine, neural networks, and Kernel Density classifier. We compared results of
computer algorithms with the human expert’s accuracy (about 77% for the two-classes problem
and about 60% for the six-classes problem). Results show that computer algorithms can  achieve
the same or even better accuracy than that of human experts (best results were up to 85% for the
two-classes problem and up to 65% for the six-classes problem).

1. Introduction

Recently developed technology by dr. Korotkov (1998) from Technical University in
St.Petersburg, based on the Kirlian effect, for recording the human bio-electromagnetic field (aura)
using the Gas Discharge Visualization (GDV) technique provides potentially useful information
about the biophysical and/or psychical state of the recorded person. In order to make the unbiased
decisions about the state of the person we want to be able to develop the computer algorithm for
extracting information/describing/classifying/making decisions about the state of the person from
the recorded coronas of fingertips.

The aim of our study is to differentiate 6 types of coronas, 3 types in normal state of
consciousness:  Ia, Ib, Ic (pictures were recorded with single GDV camera in Ljubljana, all with
the same settings of parameters, classification into 3 types was done manually):
 Ia – harmonious energy state  (120 coronas)
 Ib – non-homogenous but still energetically full (93 coronas)
 Ic – energetically poor  (76 coronas)

and 3 types in altered states of consciousness (pictures obtained from dr. Korotkov, recorded by
different GDV cameras with different settings of parameters and pictures were not normalized –
they were of variable size):
 Rings – double coronas (we added 7 pictures of double coronas recorded in Ljubljana) (90

coronas)
 Branches – long streamers branching in various directions  (74 coronas)



 Spots – unusual spots  (51 coronas)
 Our aim is to differentiate normal from altered state of consciousness (2 classes) and to
differentiate among all 6 types of coronas (6 classes). Figure 1 provides example coronas for each
type.

Types Ia, Ib and Ic– normal state of consciousness

Types Branches, Rings and Spots– altered states of consciousness

Figure 1: Example coronas for each type.

2. The methodology

We first had to preprocess all the pictures so that all were of equal size (320 x 240). We then
described the pictures with various sets of numerical parameters (attributes) with five different
parametrization algorithms (described in more detail in the next section):
  a)  IP (Image Processor – 22 attributes),
  b)  PCA (Principal Component Analysis), 
  c)  Association Rules,
  d)  GDV Assistant with some basic GDV parameters,
e)GDV Assistant with additional parameters.

Therefore we had available 5 different learning sets for two-classes problem: altered (one of
Rings, Spots, and Branches) versus non- altered (one of Ia, Ib, Ic) state of consciousness. Some of
the sets were used also as six-classes problems (differentiating among all six different types of
coronas).

We tried to solve some of  the above classification tasks by using various machine learning
algorithms as implemented in Weka  system (Witten and Frank, 2000):

 Quinlan's (1993) C4.5 algorithm for generating decision trees; 
 K-nearest neighbor classifier by Aha, D., and D. Kibler (1991);
 Simple Kernel Density classifier;
 Naïve Bayesian classifier using estimator classes: Numeric estimator precision values

are chosen based on analysis of the training data. For this reason, the classifier is not an
Updateable Classifier (which in typical usage are initialized with zero training instances,
see (John and Langley, 1995));

 SMO implements John C. Platt's sequential minimal optimization algorithm for training
a support vector classifier using polynomial kernels. It transforms the output of SVM



into probabilities by applying a standard sigmoid function that is not fitted to the data.
This implementation globally replaces all missing values and transforms nominal
attributes into binary ones (see Platt, 1998; Keerthi et al., 2001);

 Neural networks: standard multilayared feedforward neural network with
backpropagation of errors learning mechanism (Rumelhart et al., 1986).

SMO algorithm can be used only for two-classes problems, while the other algorithms can be used
on two-classes and on six-classes problems.

3. Description of different parametrization procedures

3.1 Image Processor: First and second-order statistics on textures

IP (Image Processor) is a program, developed by Bevk (Bevk and Kononenko, 2002) for
description of textures that implements a set of parameters as described by  Julesz et al. (1973).
Texture is a very commonly used term in computer vision. We all recognize texture when we see
it, but it is very difficult to define it precisely. The main question is: "When is a texture pair
distinguishable (by human), given that they have the same brightness, contrast and color?" Julesz
et al. (1973) have studied human texture perception in the context of its discrimination. Their
work concentrates on the spatial statistics of texture gray levels. To summarize their work, we
need to define the first- and second-order spatial statistics:

 First-order  statistics  are  calculated  from  the  probability  of  observing  a  particular  pixel
value at  a  randomly chosen  location  in  the  image.  They  depend  only  on  individual  pixel
values  and  not  on  interaction  of  neighboring  pixel  values.  The  mean  of  image  grey
intensity is an example of the first-order statistic.

 Second-order  statistics  are  calculated  from  the  probability  of  observing  a  pair  of  pixel
values in the image that are some vector d


 apart. Note that second-order statistics become

first-order if  0,0d 


.

3.1.1 First-order statistics

First-order statistics are quite  straightforward.  They are  computed from a  function that  measures
the probability of a certain pixel occurring in an image. This function is also known as histogram.
Histogram on grey scale images is defined as follows:

  ; 0,1,..., 1gn
H g g G

N
  

Where N is  the  number  of  all  pixels  in  an image,  G is  the  number  of  grey  levels  and  gn  is  the
number of pixels of value g in an image. As we can see H is a probability function of pixel values,
therefore  we  can  characterize  its  properties  with  a  set  of  statistical  parameters  (also  called

first-order statistics). Below is a list of such parameters, where  represents n-th parameter of  H.
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3.1.2 Second-order statistics

Second-order  statistics  operate  on probability  function that  measures  the  probability  of  a  pair  of
pixel values occurring some vector d


 apart in the image. This probability function is also called

co-occurrence matrix (CM), since it measures the probability of co-occurrence of two pixel values.
Let  us  now define  CM on  the  grey  scale  image.  Suppose  we  have  an  M N  image  with  color

space of G grey levels. Given a certain displacement vector  ,d dx dy 


 the CM looks like this
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Note that so defined CM is not symmetrical in terms of
   , ,d dC i j C j i  

A symmetrical CM can be computed using the formula

 1
2d d dC C C    

Suppose  we  have  a  set  of  displacement  vectors  1 2, ,..., nd d d 
  

.  The  final  CM  C  used  in

second-order  statistics  is  then  the  average  at  certain  grey  level   over  all  CMs  based  on
displacement vectors from .

Mostly used set of distance vectors is . This actually means that we
are considering four neighboring pixels. It is empirically proven that this is a rather successful set,
but there is no proof that this is a universally good set. This set holds pretty good information on
local (short distance) pixel dependencies,  but lacks of global (long distance)  pixel  dependencies.
The more we extend  with vectors that represent larger distances, the more local information we



loose. This loss of information happens because of the averaging in the last step of calculation of
CM. There is obviously a trade off between local and global information that CM could hold. 
In  order  to  describe  CM  C  of  grey  scale  image  Haralick  et  al.  (1973)  proposed  a  set  of

second-order statistics. These statistics are listed below. In the list nF  represents n-th statistics of
C.
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 Correlation
Let us first define marginal probabilities of C:
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' ''C C , since C is symmetrical. Notice what is happening here:

A probability of a certain  'C i  is calculated so that probabilities over all possible pairs of
i  are  summed.  What  we  get  is  a  probability  of  pixel  value  i  itself.  That  is  actually  a
histogram of an image. The same holds for ''C  as well. 

Let 'C  and ''C  be the means of marginal probabilities
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Note that ' ''C C  . If C' and C'' are histograms of an image and 'C  and ''C  are their

means, we can easily see what 'C  and ''C  represent. They simply represent the average
pixel value of an image.

Further let  and  be the standard deviations of C' and C'':

Obviously . Now we are ready to define a measure of correlation for C, that is:

 Variance



   
1 1

2
6 '

0 0
,

G G

C
i j

F i C i j
 

 

 
 Mean of pair-sums

First define a new probability function, a function that represents a probability of a
particular pair-sum of pixel values. Let's denote it with S:
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Now we can calculate their means
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 Variance of pair-differences

Like we defined a probability function for pair-sums we can also define a probability
function for all possible pair-differences. We will denote it with D:
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Now it is possible to define a mean of pair-differences
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And finally we are able to calculate variances
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3.2 Association rules for texture description



We used the algorithm developed by Bevk (2003) and based on fast Apriori algorithm (Agrawal
and Srikant, 1994) for generation of association rules in large databases. Association rules were
developed by Agrawal et al. (1993). The following is a formal statement of the problem: Let 

 1 2, ,..., mI i i i  be a set of literals, called items. Let D be a set of transactions, where each
transaction T is a set of items such that T I . We say that a transaction T contains X, if X T .
An association rule is an implication of the form X Y , where , , 0X I Y I X Y    . The
rule X Y  holds in the transaction set D with confidence c if c% of transactions in D that
contain X also contain Y. The rule X Y  has support s in the transaction set D if s% of
transactions in D contain X Y .
The problem of discovering association rules says:  Find all association rules in transaction set D
with confidence of at least minconf and support of at least minsup, where minconf and minsup
represent the lower boundary for confidence and support of association rules. 

3.2.1 Texture representation in the context of association rules

The use of association rules for texture description was first introduced by Rushing et al. (2001).
Here we present a slightly different approach, which uses different texture representation and
different algorithm for association rules induction.  
In order to use association rules algorithms on textures, we have to define transactions, transaction
items, association rules and the transaction set in the context of textures.

A pixel A


 of a texture P is a vector  , ,A X Y I P 


, where X and Y represent absolute
coordinates, and I represents the intensity of texture pixel.

A root pixel can be any chosen pixel a texture  , ,K K KK X Y I


.

R neighborhood ,R KN 
 is a set of texture pixels, which are located in the circular area of radius R

with root pixel K


 at the center. Root pixel K


 itself is not a member of its neighborhood ,R KN 
.

     2 2
, , , 0.5 \K KR KN X Y I X X Y Y R K           




Transaction ,R KT 
 is a set of elements based on its corresponding neighborhood ,R KN 

. The
elements of transaction are represented with Euclidean distance and intensity difference from root
pixel. 

Transaction element is two-dimensional vector , where the first component represents
Euclidean distance from root pixel and the second component represents intensity difference from
root pixel.

Association rule is composed of transaction elements; therefore its form looks like this



Transaction set ,P RD  is composed of transactions, which are derived from all possible root pixels
of a texture P at certain neighborhood size R:

 , , :P R R KD T K K P  
 

This representation of textures allows us to use general algorithms for association rules on
textures. Also note that this representation is rotation invariant. 

3.2.2 From association rules to feature description

Using association rules on textures, will allow to extract a set of features (attributes) for a
particular domain of textures. Here is the general algorithm for that purpose:

 Select a (small) subset of images F for feature extraction.
The subset F can be considerably small. Use at least one typical example of images in the
domain. That is at least one sample per class or more, if the class consists of subclasses.

 Pre-process the images in F.
Pre-processing involves the transformation of images to grey scale if necessary, the
quantization of grey levels and the selection of proper neighborhood size R.
The initial number of grey levels per pixel is usually 256. The quantization process
downscales it to say 16 levels per pixel. Typical neighborhood sizes are 3, 4, 5. 

 Generate association rules form images in F.
Because of the representation of texture, it is possible to use any algorithm for association
rules extraction. We use Apriori and GenRules as described in (Agrawal et al., 1993).

 Use generated association rules to extract a set of features.
There are two attributes associated with each association rule: support and confidence. Use
these two attributes of all association rules to construct a feature set. The number of
extracted features is twice the number of association rules, which could be quite a lot. We
therefore recommend using some feature selection algorithm, which can be of general
purpose, namely the features are continuous values between 0 and 1. 

3.2.3 Use the extracted feature set for classification

To use the extracted feature set for classification, calculate the features on the images excluded
from feature extraction. This means calculating support and confidence of extracted association
rules. The result is a data set with continuous features. The representation of images with a set of
continuous features (attributes) allows us to choose from a large variety of machine learning
algorithms for classification.  

3.3 Principal component analysis (PCA)

Principal component analysis (PCA) involves a mathematical procedure that transforms a number
of (possibly) correlated variables into a (smaller) number of uncorrelated variables called principal
components.  The first principal component accounts for as much of the variability in the  data  as
possible,  and  each  succeeding  component  accounts  for  as  much  of  the  remaining  variability  as
possible. 
The idea of using PCA for  image processing was first  used by Sirovich and Kirby (1987).  Their
work uses PCA for the image database compression. Also, a very well known work was done by
Turk and Pentland (1991), who use PCA for human face recognition. 
Let  us  summarize  the  face  recognition  algorithm.  This  method  tries  to  find  the  principal
components  in  the  distribution  of  features  across  images,  also  called  the  eigenvectors.  These



eigenvectors  can  be  considered  as  a  set  of  features,  which  together  characterize  the  variation
between  images.  Each  of  the  images  in  the  training  set  can  be  represented  exactly  as  linear
combination  of  the  eigenvectors.  If  we  use  only  some  eigenvectors  that  have  the  largest
eigenvalues, we can approximate and represent the most significant variation within the image set.
Therefore  the  best  M  eigenvectors  span  a  M-dimensional  subspace  of  all  possible  images.
Eigenvectors, also called characteristic vectors, are computed from the covariance matrix, which is
composed of the differences between each image and the average image.  

Here  is  more  formal  procedure  of  this  algorithm.  Every  image  ; 1..jI j M ,  which  is  a  X Y

matrix, is here represented as a XY N  dimensional vector ji


. Because we are interested in the
variation between pictures, we calculate the average image:
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Then we calculate for each image ji


 its difference from average image c :
 , 1..j jd i c j M  

  

From here on, each image ji


 is represented with its difference jd


 from average image. Now, let’s
compose a matrix of differences: 

1 2, ,.., MP d d d   
  

The  covariance  matrix  Q of  the  matrix  P  would  be  calculated  as  
TQ PP .Q  is  N N  matrix.

Since N is usually a very large number, it  is computationally expensive to  compute  eigenvectors
from it.  Luckily there is a way around that problem. First compute a (usually) smaller matrix:

TQ P P

Note that Q  is M M  matrix, which is usually smaller than N N , since the number of images
is smaller than the number of pixels in each image. It can be shown that the M largest eigenvalues
and  the  corresponding  eigenvectors  of  Q  can  be  determined  from  the  M  eigenvalues  and

eigenvectors of Q  (Turk and Pentland, 1991).

Having eigenvectors  ' je  and eigenvalues  ' j  of  Q ,  eigenvectors  je  and  eigenvalues  j  of  Q
can be calculated using these simple formulas: 

'j j 

1 '
'j j
j

e Pe


 

Next we project each difference vector  onto subspace determined by largest M eigenvectors:

Each projection  is called feature vector. In other words,  holds a set of features describing

the image . 
The  features  of  some  new image   are  calculated  so,  that  we  project  its  difference  vector  

onto subspace determined by largest eigenvectors. The projection  represents a set of features
describing this new image .

Let us go back to the problem of finding eigenvectors and eigenvalues of some matrix A. A 



matrix A is said to have an eigenvector x and corresponding eigenvalue   if
Ax x

The upper equation can also be formulated as
0A I 

which,  if  expanded  out,  is  an  Nth  degree  polynomial  in  lambda  whose  roots  are  eigenvalues.
Obviously there are  always N (not  necessarily  distinct)  eigenvalues.  Root  searching in  the  upper
equation is a very poor computational method. 

In our case, we want to find eigenvectors of a covariance matrix Q , which is always symmetric.
The procedure is as follows:

First we transform symmetric matrix Q  to tridiagonal form using Householder reductions  (Press
et  al.,  1992).  Secondly  we  calculate  eigenvalues  and  eigenvectors  from tridiagonal  matrix  using
QL Algorithm (Press et al., 1992). 

3.4 GDV Assistant

GDV Assistant is the system developed by Sadikov (2002) in order to have a complete control of
various numerical parameters, developed by Korotkov (1998) and in order to experiment with
various additional parameters. Here we provide only a list of used numerical parameters. A more
detailed description can be found in this volume (Sadikov and Kononenko, 2003).

3.4.1 Basic parameters of GDV Assistant

Sadikov (2002) reimplemented the calculation of ten numerical parameters, as implemented by
software package GDV Analysis (Korotkov, 1998): 
A1. Area of GDV-gram, 
A2. Noise, deleted from the picture, 
A3. Form coefficient I, 
A4. Fractal dimension, 
A5. Brightness coefficient, 
A6. Brightness deviation, 
A7. Number of separated fragments in the image, 
A8. Average area per fragment, 
A9. Deviation of fragments’ areas, 
A10. Relative are of GDV-gram.

Besides, we implemented also two parameters, defined by Korotkov and Korotkin (2001): average
streamer width and  entropy of corona, and also five additional parameters (Sadikov, 2002):
corona width,  form deviation, normalized skewness of brightness, normalized stability of
brightness, and entropy of brightness. All parameters, with the exception of corona width, are
described in (Sadikov et al., 2003, this volume). Corona width is defined as follows:
where Area is absolute area (A1) of corona and Sellipse  is the area of inner oval (ellipse) of corona.

3.4.2 GDV Assistant with additional parameters

In order to get more information about fragments of corona and their spatial relations we
developed ten additional parameters:
- average distance of fragment from corona center,
- st. dev. of  distance of fragment from corona center,
- average distance of fragment from nearest neighbor,
- st. dev. of  distance of fragment from nearest neighbor,



- average distance of fragment from corona ellipse,
- st. dev. of  distance of fragment from corona ellipse,
- average number of edges per fragment,
- average length of fragments edge,
- st. dev. of edge points from fragment center,
- st. dev. of edge points from fragment center relatively to the fragment.

4. Results

4.1 Results for C4.5

In the first experiment we tried to learn decision trees from five different descriptions of data, as
returned by different parametrization algorithms, for two-classes problem. We used Quinlan’s
C4.5 algorithm. For testing we used the standard 10-fold cross validation:
1. the whole training set is randomly divided into ten subsets of equal size, 
2. in each run, one subset is kept for testing and the union of the remaining nine subsets is used

for training the classifier,
3. the result (classification error) is averaged over ten runs and the standard error is calculated.

Results are given in Table 1. We provide 
- the number of numerical parameters (attributes) used to describe the training instances, 
- the achieved classification error, 
- standard error which is equal to standard deviation divided with the square root of the number of
testing instances, and 
- default error which is equal to 100 minus the percentage of  instances that belong  to majority
(most probable) class (for our data set 289 out of 504 = 57% of instances belong to class normal
state of consciousness); default error shows how difficult is the classification problem, as default
error can be achieved by very simple classifier which classifies every testing instance into the
majority class.
Results show that GDV Assistant achieves best results, which was also expected, although we
expected larger advantage over other parametrization algorithms. Additional attributes for
description of different statistics of fragments did not provide any improvement, which is
somehow disappointing. 

Number of
attributes

Classification
error

Standard
error

Default
error

IP 22 19.8 % 0.9 % 43,0 %
PCA 15 29.2 % 1.8 % 43,0 %

Assoc.rules 44 20.0 % 1.6 % 43,0 %
GDV Assist. 17 18.6 % 1.5 % 43,0 %
GDV Assist

with add.
atts

27
18.3 % 1.5 % 43,0 %

Table 1: Classification error of C4.5 on five different descriptions of coronas for two-class
problem

4.2 Results of a human expert

In order to get a better feeling about how good are the above results in comparison to humans, we
tested a human expert on one fold (51 testing instances) and compared his result with the accuracy
of C4.5 (using the parametrization with Associative rules) on the same testing set. Results are as



follows.

On the two-classes problem the human expert and C4.5 achieved the same classification error of
23.5%. The misclassification matrices are provided in Table 2. It seems that C4.5 is biased
towards classifying more coronas as normal and therefore coronas for the altered state of
consciousness are poorly classified. On the other hand the human expert does not have such bias
and the misclassifications are more evenly distributed between two classes.

human expert C4.5
classified as 

(a)
classified as 

(b)
classified as 

(a)
classified as 

(b)
Class normal state

(a)
22

4 28 1
Class altered state

(b)
8

17 11 11
Table 2: Misclassification matrices for the two-classes problem of a human expert and C4.5

On the six-classes problem the human expert had classification error of 39,2%. C4.5 was
significantly worse with 54.9%. The misclassification matrices are provided in Tables 3.1 and 3.2.
Again it seems that C4.5 is biased towards classifying more coronas as normal and therefore
coronas for the altered state of consciousness are poorly classified. On the other hand the human
expert does not have such bias and the misclassifications are more evenly distributed among
normal an altered states of consciousness.

The easiest types of coronas for classification are Ia (normal) and Rings (altered). The most
difficult type of coronas seems to be Branches (altered), which is by human expert most often
confused with Ib (normal) and Spots (altered), and by C4.5 with Ic (altered).

classified as 
(a)

classified as 
(b)

classified as 
(c)

classified as 
(d)

classified as 
(e)

classified as 
(f)

Class normal Ia (a) 9 2 1
Class normal Ib (b) 3 2 3 1
Class normal Ic (c) 5 1 2
Class Branches (d) 3 1 2 2
Class Rings       (e) 1 8
Class Spots       (f) 1 4

Table 3.1: Misclassification matrix for the six-classes problem of a human expert 

classified as 
(a)

classified as 
(b)

classified as 
(c)

classified as 
(d)

classified as 
(e)

classified as 
(f)

Class normal Ia (a) 7 4 1
Class normal Ib (b) 5 3 1
Class normal Ic (c) 1 3 4
Class Branches (d) 2 5 1
Class Rings       (e) 1 7 1
Class Spots       (f) 1 2 2

Table 3.2: Misclassification matrix for the six-classes problem of C4.5 

4.3 Results of other machine learning algorithms



We tried also the other machine learning algorithms on all the data sets. For testing we used the
standard 10-fold cross validation, as described above. The results are given in Tables 4 and 5.
Parametrization algorithms PCA and Association rules need a small subset of images for defining
the attributes (this subset, called pre-training subset, is subtracted from the training set of images).
We run each of these two algorithms on ten different pre-training subsets of images, so that we
obtained for each of them ten different parametrizations. All machine learning algorithms were
run on all of them and in tables we give the best results (the highest accuracy among ten average
accuracies obtained from cross validations over all ten parametrizations). Note also that SMO can
be used only for two-classes problems, therefore it is omitted from Table 5.

C4.5 Naïve Bayes K-NN
Kernel
Density SMO

Neural
networks

IP 80.2 % 82.7 % 78.7% 76.2 % 84.7 % 83.1 %
PCA* 72.8 % 74.2 % 71.2 % 66.0 % 74.3 % 74.3 %

Assoc.rules
*

80.9 %
75.1 % 80.0 % 76.8 % 83.8 % 83.9 %

GDV Assist 81.4 % 81.2 % 74.5 %% 65.7 % 80.6 % 76.9 %
GDV Assist

with add.
atts

81.7 %
       80.9 % 72.6 % 64.6 % 80.5 % 71.9 %

Table 4: Classification accuracy of five machine learning algorithms on three different
descriptions of coronas for two-classes problem (*  we give best results over ten different
pre-training subsets of images for Association rules and PCA parametrization algorithms)

C4.5 Naïve Bayes K-NN
Kernel
Density

Neural
networks

IP 60.2 % 55.4 % 56.8 % 55.5 % 65.2 %
PCA* 47.7 % 50.7 % 50.2 % 53.8 % 52.1 %

Assoc.rules
*

50.9 %
37.5 % 51.5 % 52.5 % 61.6 %

GDV Assist 55.0 % 54.2 % 51.6 % 49.4 % 59.0 %
GDV Assist

with add.
atts

54.1 %
51.2 % 48.8 % 48.5 % 54.6 %

Table 5: Classification accuracy of five machine learning algorithms on three different
descriptions of coronas for six-classes problem (*  we give best results over ten different
pre-training subsets of images for Association rules and PCA parametrization algorithms)

On the two-classes problem SMO (based on SVM machine learning algorithm) achieved the best
results: accuracy was up to 85%. Neural networks were rather close with accuracy up to 84% using
Associative rules for parametrization. The worse was Kernel Density algorithm, while the others
achieved comparable results. 

 GDV Assistant, Image Processor with statistical parametrization, and parametrization based on



Association rules provide comparably good description of images, while the Principal Component
Analysis provides the worst parametrization. This is somehow disappointing as we expected PCA
to be more appropriate for describing coronas than algorithms, which are designed specially for
textures. However, it is well known that PCA requires normalized images (coronas should have
been all of approximately equal size and centered, pictures should all be of equal level of
brightness) which was not the case in our study.

On the six-classes problem neural networks seems to perform best and achieved accuracy up to
65% using statistical parametrization of images. The other algorithms (without SMO, which
cannot deal with more than two classes) achieved lower accuracy. Image Processor with statistical
parametrization shows clear advantage over the other parametrization methods, which give
comparable quality of image descriptions.

5. Conclusions and future work

We described the development of computer classifiers for various types of coronas. In this study
we were interested in the implementation of computer programs for detection of coronas of people
in altered states of consciousness. Such coronas are known to have rings (double coronas), special
branch-like structure of streamers, and/or curious spots. Besides detecting altered states of
consciousness (two-classes problem) we were interested also in classification of different types of
coronas (six-classes problem). 
     We used several approaches to parametrization of images: statistical approach, principal
component analysis, association rules and GDV software approach extended with several
additional parameter. For the development of the classifiers we used various machine learning
algorithms: learning of decision trees, naïve Bayesian classifier, K-nearest neighbors classifier,
Support vector machine, and Kernel Density classifier. 
       The most competitive machine learning algorithms for our problem seem to be neural
networks and Support vector machines (SVM incorporated in SMO algorithm). The worst seems
to be the Kernel Density classifier.
      Among parametrization techniques GDV Assistant, Image Processor (statistical approach) and
Associative rules (symbolic approach) achieved similar quality of image descriptions, while the
Principal Component Analysis was the worse. GDV Assistant seems to be a promising approach,
however further tests and further improvements are necessary.
     The best results (classification accuracy up to 85%) in the two-classes problem were achieved
by SMO algorithm, based on Support vector machines, and using statistical parametrization of
images. This result is better than that of a human expert, who achieved 77% of classification
accuracy. In the six-classes problem, the best results (classification accuracy up to 65%) were
achieved by neural networks with statistical parametrization of images. This result also
outperforms that of the human expert. Those results indicate that computer algorithms can achieve
the same or even better accuracy than human experts. 

In future we plan to:
- add to GDV Assistant some more possibly informative parameters for this problem, 
- we plan to try some other machine learning algorithms (other variants of decision trees and Naïve
Bayes), 
- test more human experts to see how accurate the manual classification can be,
- combine various parametrization techniques in order to extract possibly different and useful
information from different sets of parameters and preprocess is using various feature subset
selection approaches,
- combine the decisions of different classifiers in order to improve their reliability and try also
other approaches to improving the classification accuracy, such as bagging, boosting, stacking, and
transduction,



- we plan to collect additional images of coronas in order to increase the number of training/testing
instances and therefore to improve the reliability of classifiers.

Acknowledgments
We thank dr. Konstantin Korotkov for providing the coronas of fingertips of people in altered
states of consciousness. We thank also Vida Korenc for preprocessing the images and Ivan Vidmar
for implementing additional parameters in GDV Assistant and for performing preliminary
experiments with C4.5.

References
Aha, D., and D. Kibler (1991) "Instance-based learning algorithms", Machine Learning,

vol.6, pp. 37-66.
R. Agrawal, T. Imielinski, and A. Swami (1993) Mining association rules between sets of

items in large databases. In P. Buneman and S. Jajodia, editors, Proceedings of the 1993 ACM
SIGMOD International Conference on Mangement of Data, pages 207-216, Washington, D.C.,
1993.

R. Agrawal and R. Srikant (1994) Fast algorithms for mining association rules. In J. B.
Bocca, M. Jarke, and C. Zaniolo, editors, Proc. 20th Int. Conf. Very Large Data Bases, VLDB,
pages 487-499. Morgan Kaufmann.

Bevk M. (2003) Texture Analysis with Machine Learning, M.Sc. Thesis, University of
Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia. (in Slovene)

Julesz, B., Gilbert, E.N., Shepp, L.A., Frisch H.L.(1973). Inability of Humans To
Discriminate Between Visual Textures That Agree in Second-Order-Statistics, Perception 2, pp.
391-405.

M. Bevk and I. Kononenko (2002) A statistical approach to texture description: A
preliminary study. In ICML-2002 Workshop on Machine Learning in Computer Vision, pages
39-48, Sydney, Australia, 2002.

R. Haralick, K. Shanmugam, and I. Dinstein (1973) Textural features for image
classification. IEEE Transactions on Systems, Man and Cybernetics, pages 610-621.

G. H. John and P. Langley (1995). Estimating Continuous Distributions in Bayesian
Classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. pp.
338-345. Morgan Kaufmann, San Mateo.
S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy (2001). Improvements to Platt's
SMO Algorithm for SVM Classifier Design. Neural Computation, 13(3), pp 637-649, 2001.
Korotkov, K. (1998) Aura and Consciousness, St.Petersburg, Russia: State Editing & Publishing
Unit “Kultura”.

Korotkov, K., Korotkin, D. (2001) Concentration dependence of gas discharge around drops
of inorganic electrolytes, Journal of Applied Physics, Vol. 89, pp. 4732-4736.

J. Platt (1998). Fast Training of Support Vector Machines using Sequential Minimal
Optimization. Advances in Kernel Methods - Support Vector Learning, B. Schölkopf, C. Burges,
and A. Smola, eds., MIT Press.
W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling (1992) Numerical Recipes: The
Art of Scientific Computing. Cambridge University Press, Cambridge (UK) and New York, 2nd

edition.
J.R. Quinlan (1993) C4.5 Programs for Machine Learning, Morgan Kaufmann. 
D.E. Rumelhart, G.E. Hinton, R.J. Williams (1986) Learning internal representations by error

propagation. In: Rumelhart D.E. and  McClelland J.L. (eds.) Parallel Distributed Processing, Vol.
1:  Foundations. Cambridge: MIT Press.

J. A. Rushing, H. S. Ranagath, T. H. Hinke, and S. J. Graves (2001) Using association rules
as texture features. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages
845-858.

A. Sadikov (2002) Computer visualization, parametrization and analysis of images of
electrical gas discgarge (in Slovene), M.Sc. Thesis, University of Ljubljana, 2002.



L. Sirovich and M. Kirby (1987) A low-dimensional procedure for the characterisation of
human faces. Journal of the Optical Society of America, pages 519-524.

A. Sadikov, I. Kononenko, F. Weibel (2003) Analyzing Coronas of Fruits and Leaves, This
volume.

M. Turk and A. Pentland (1991) Eigenfaces for recognition. Journal of Cognitive
Neuroscience, pages 71-86.

I. H. Witten, E. Frank (2000) Data mining: Practical machine learning tools and techniques
with Java implementations, Morgan Kaufmann.


