Chapter 1: History. History electrophotographic research.
1.1 History of gas discharge visualization.
1.2 Conference on Kirlian.
1.3 IKRA (The International Kirlian Research Association).
1.4 IUMAB (International Union of Medical & Applied Bioelectrography).
1.5 Kirlian Semyon Davidovich.
1.6 Konstantin G. Korotkov
1.7 Books on Kirlian.
1.8 Literature on Kirlian.
1.9 Patents.
1.10 Related fields and promising areas of research.

2.1 Analysis of the sectors in the corona discharge.
 2.1.1 Distribution of the different areas on the surface of the fingertips.
 2.1.2 1981 Mandel Peter (Germany) fingers and toes.
 2.1.3 1992 Mamedov YE (Moscow, Russia) fingers.
 2.1.4 1998 Korotkov KG (Russia, Saint-Petersburg) fingers.
 2.1.5 2001 Shabayev VP (Kazakhstan, Almaty) fingers and toes.
 2.1.6 2008 Gheorghe Hagi (France), fingers and toes.
 2.1.7 2000 F. Sanchez (Spain) fingers.
 2.1.8 Different schemes of interpretation sectors.
 2.1.9 Interpretation discharge hands.
 2.1.10 The study of the dynamics of discharge in certain sectors.
2.2 Integrated image analysis.
 2.2.1 Analysis of the luminance histogram.
 2.2.2 Symmetry images.
2.3 Study of the blood by the method of Kirlian.
2.4 Diagnosis of cancer using the method of Kirlian.
2.5 Overseas work on cancer diagnosis method Kirlian.
2.6 Application of the Kirlian in dentistry.
2.7 Application of the Kirlian in the sport.
2.8 Application of the Kirlian therapy.

3.1 The various embodiments of the device.
3.2 Multi-layer registration.
3.3 Standard methods for registration of discharge.
3.4 Foreign Kirlian camera.
 3.4.1 Brazil.
3.4.2 USA.
3.4.3 Germany.
3.4.4 UK.
3.4.5 Canada.
3.4.6 Spain.
3.4.7 Holland.
3.4.8 Italy.
3.4.9 Argentina.
3.4.10 Different models of Kirlian cameras.

3.5 The Russian Kirlian camera.
3.5.1 "GDV Crown», «Crown GDV».
3.5.2 "Corona TV», «Crown TV».
3.5.3 "KELSY», «Kelsy».
3.5.4 "GDV», «BEO GDV».
3.5.5 "Bio Valley», «Bio-Well».
3.5.6 "crownscopy», «Crownoscope».

3.6 Software GDV.
3.7 Schemes of Kirlian cameras.
3.8 How to make a device for monitoring the Kirlian effect.

Chapter 4. People. Research Kirlian effect.
4.1 Krasnodar.
4.2 Saint Petersburg.
4.3 Moscow.
4.4 Voronezh.
4.5 Novosibirsk
4.6 Rostov-on-Don.
4.7 Different cities.

4.8 Kazakhstan.
4.9 Ukraine.
4.10 Belarus.
4.11 Other former republics.

Chapter 5. Abroad. Foreign research method Kirlian.
5.1 Brazil.
5.1.1 Newton Milhomens.
5.1.2 Diagnosis of color pictures Newton Milhomens.
5.1.3 Various studies in Brazil.
5.2 USA.
5.2.1 Stanley Krippner, Maimonides Hospital in Brooklyn, New-York.
5.2.2 Moss Thelma, UCLA-University of California. Los Angeles
5.2.3 Mankind Research Unlimited Inc. (MRU).
5.2.4 Tiller William A. Dakin Henry S. Stanford University
5.2.5 Drexel University, Philadelphia, USA.
5.2.6 1973-1999 years.
5.2.7 2000-2015.

5.3 France.
5.4 Germany.
5.5 UK, England.
5.6 Romania.
5.7 Different countries.

6.1 The impact surface of the skin on the formation of streamers.
 6.1.1 Structure of pores on the fingertip.
 6.1.2 The mechanism of sweating.

6.2 Research discharge far.
 6.2.1 Register discharge far.
 6.2.2 The study of physical models of the skin discharge.

6.3 The structure of the corona streamers and normal. A three structure of the corona.

6.4 Abnormalities in the structure of the corona.
 6.4.1 Failures (loss) in the crown.
 6.4.2 Anomaly "double crown".
 6.4.3 Anomaly "claws."
 6.4.4 Abnormal streamers.
 6.4.5 Spherical emissions in the crown (intoxications).
 6.4.6 Point plasmoids.
 6.4.7 Causes of emissions.
 6.4.8 Examples of abnormal images of the crown.

6.5 Dependence of the structure of the crown of the registration regime.

6.6 Register emission filter.
 6.6.1 Different types of filters.
 6.6.2 Physics process when registering with the filter.
 6.6.3 The interpretation of images obtained with and without filter.
 6.6.4 Register discharge through an opaque filter.

7.1 Register discharge acupoints (acupuncture point).
7.2 Study of the human biofield Kirlian method.
7.3 Study of the impact of energy-Kirlian method.
 7.3.1 Different types of energy-effects.
 7.3.2 Research extrasensory using the method of Kirlian.
 7.3.2.1 Research Kirlian SD
 7.3.2.2 Research Korotkov KG
 7.3.2.3 Research extrasensory in Russia.
 7.3.2.4 Research extrasensory abroad.
 7.3.3 Register of radiation from the fingertips extrasensory physical methods.
 7.3.4 Register of remote energy-effects.
7.5 The impact of meditation on the discharge of his fingers.
7.6 Effect of prayer on the discharge of his fingers.
7.7 The impact of music on the human condition, and the discharge of fingers.
7.8 Discharge phantom leaf plants.
7.9 Register discharge fingers after a person's death.
7.10 The method of Kirlian and Living Ethics (Agni Yoga) Roerich.
7.11 Bioplasm.

Chapter 8. Objects. The study of various objects by Kirlian.
8.1 Different ways to display corona discharge.
8.2 Examples of images obtained on different types of recording devices.
8.4 Fluid Analysis by the method of Kirlian.
 8.4.1 A study by applying a drop of liquid on the substrate.
 8.4.2 A study by liquid droplets suspended.
 8.4.3 Study of fluid through the electrode.
 8.4.4 A study of homeopathic medicines, highly diluted solutions.
 8.4.5 Research oils.
8.5 The study of cell cultures by the method of Kirlian.
8.6 The study of plants using the method of Kirlian.
8.7 Study animals by the method of Kirlian.
8.8 Discharge insects in high-frequency field.
8.9 Investigation of minerals by the method Kirlians.
8.10 Application for GDV research Hair.
8.11 Application of GDV in criminology.
8.12 Application of GDV in nanotechnology.

Chapter 9. Lichtenberg figures.
9.1 XVIII-th century, GK Lichtenberg
9.2 XIX-th century.
9.3 XX-th century.
9.4 Russian research Lichtenberg figures.
9.5 Colored Lichtenberg figures.
9.6 Fractal analysis Lichtenberg figures.
9.7 Determination of the velocity of propagation of the discharge.
9.8 Effect of magnetic field on the formation of Lichtenberg figures.
9.9 Figures on the polished surface, the figure of breath (breath figures).
9.10 Rings Priestley.
9.11 Modern devices based on the use of toner.
 9.11.1 Device A-SCAN ("A-scan").
 9.11.2 Device Auroskop (Auroscope).
 9.11.3 The study of images obtained using Auroskopa.

Chapter 10. Various forms of discharge.
10.1 Modes. Selection of the optimal mode of registration discharge.
 10.1.1 The optimum frequency selection in the registration image.
 10.1.2 The optimum voltage selection in the registration image.
 10.1.3 The optimal choice of the duration of the registration.
 10.1.4 Monopulse registration.
 10.1.5 Influence of the rate of increase in the pulse discharge discharge.
 10.1.6 The optimal choice of voltage polarity.
 10.1.7 The optimal choice of the atmosphere.
 10.1.8 Dependence discharge of air pressure.
 10.1.9 Dynamics discharge, the intensity of discharge from time to time.
 10.1.10 The spectral properties of discharge.

10.2 The discharge in a gas at atmospheric pressure.
 10.2.1 Different types of discharge.
 10.2.2 Register current value during discharge.
 10.2.3 The literature on the physics of the gas discharge.

10.3 Distribution of the discharge of surface sliding discharge.
 10.3.1 Physics sliding discharge.
 10.3.2 Distribution of the discharge on the surface of the skin.
 10.3.3 Distribution of the discharge on the surface of the Earth.

10.4 Microscopy view of discharge.
 10.4.1 Vacuum discharge, luminescent screen.
 10.4.2 Imaging discharge on the fluorescent screen.
 10.4.3 Optical microscopy.
 10.4.4 Electron microscopy.
10.5 Non-standard methods of registration of discharge.
 10.5.1 Different ways to register the discharge.
 10.5.2 Registration of discharge on the film.
 10.5.3 Registration discharge using liquid crystals.

10.6 Dependence of discharge from the humidity.
 10.6.1 The discharge in the humid air.
 10.6.2 St. Elmo's fire.
 10.6.3 Electrostatic spraying.
 10.6.4 Electrospray and method Kirlian.

10.7 Distribution of the discharge in a liquid medium, water and electricity.
 10.7.1 The discharge in a thin film electrolyte.
 10.7.2 Discharge in the electrolysis of water.
 10.7.3 The discharge in liquid.
 10.7.4 Energy by decomposition of water (by electrolysis), water burning.

10.8 The dependence of the emission on various conditions.
 10.8.1 The dependence of the discharge from the registration conditions.
 10.8.2 Dependence discharge of the mental state of the person.
 10.8.3 The dependence of the discharge from the general physical condition of person.
 10.8.4 The dependence of the discharge from the state of the environment.
 10.8.5 Investigation of the effect of geopathic zones with the help of GDV.
 10.8.6 The intensity of the discharge from the time of day.

Chapter 11. The volume discharge.
11.1 Three-dimensional shapes Lichtenberg.
11.2 Discharge in solids.
11.3 Photographing lightning.
11.4 Plasma lamps (balls).
11.5 Spot discharge.
11.6 Electric wind.
11.7 Photographing discharge (spark) in the gas, spark photography.

Chapter 12. The surface discharge.
12.1 Distant registration method, GDV avalanche.
12.2 Examination of physical processes in surface discharge.
12.3 Tapered electrodes.
12.4 Study objects via surface discharge.
12.5 Register the surrounding field by the GDV.

Chapter 13. Electrophotography.
13.1 History of electrophotography (Xerox).
13.2 Photographic electromagnetic field.
13.3 Electroluminescence.
13.4 Electroradiography.
13.5 The history of photography.
13.6 Register discharges inspection.

Chapter 14. Kirlian Photos of different objects.
14.1 Discharge human fingers.
14.2 Discharge hands of man.
14.3 Discharge human foot.
14.4 Discharge different parts of the human body.
14.5 Discharge coins.
14.6 Discharge metal objects.
14.7 Discharge shells.
14.8 Discharge products.
14.9 Discharge plants.
14.10 Photo discharges.

Chapter 15. Kirlian photography mans.
15.1 UK (England).
15.2 USA.
15.3 Germany.
15.4 Different countries.
15.5 Various photographers.

Abstract.
Examines the history and development of the method of Kirlian (gas discharge visualization). Describes the construction of various devices for implementing the method of Kirlian. A review of studies on the application of the method of Kirlian in medicine for the diagnosis of various diseases, including cancer. We study the physics of gas discharge visualization and its relationship with the resulting image of the corona discharge. The data on the work carried out by different organizations, cities and countries.

Full text of the book in Russian can be freely downloaded, a list of links:

Chapter 1: History. History electrophotographic research. 70 pages, 3.5 MB, https://yadi.sk/i/iHQrlk2Hh2SZF

Chapter 4. People. Research Kirlian effect. 156 pages, 4.6 MB, https://yadi.sk/i/7Upzq44h2Sai

Chapter 8. Objects. The study of various objects by Kirlian. 84 pages, 4.4 MB, https://yadi.sk/i/6vkn61Jzh2ScN

Chapter 10. Various forms of discharge.
214 pages, 9.4 MB. https://yadi.sk/i/JnNsS2UFh2SdB

Chapter 11. The volume discharge.
39 pages, 2.7 MB. https://yadi.sk/i/Vp7Bbudfh2SdP

Chapter 12. The surface discharge.
54 pages, 3.5 MB. https://yadi.sk/i/fOjhFB7Eh2Sdb

Chapter 13. Electrophotography.
40 pages, 1.6 MB. https://yadi.sk/i/Gu7AwHBDh2Sdu

Chapter 14. Kirlian Photos of different objects.
78 pages, 4.8 MB. https://yadi.sk/i/XneDpNn6h2Se8

Chapter 15. Kirlian photography mans.
201 pages, 18.9 MB. https://yadi.sk/i/wUtP7-N5h2SeC

Total volume 1500 pages.

--
Chapter 1: History. History electrophotographic research.

1.1 History of gas discharge visualization. 8
1.2 Conference Kirlian. 36
1.3 IKRA (The International Kirlian Research Association). 38
1.4 IUMAB (International Union of Medical & Applied Bioelectrography). 39
1.5 Kirlian Semyon Davidovich. 43
1.6 Konstantin G. Korotkov. 51
1.7 Books on Kirlian. 58
1.8 Literature on Kirlian. 64
1.9 Patents. 65
1.10 Related fields and promising areas of research. 67

1.1 History of gas discharge visualization.

In the literature, different terms are used to describe the effect of the discharge of objects at high voltage high-frequency fields:
- elektrografiya, electrography (1879 Lachinov DA)
- energografiya, energogramma (1899 Pogorelsky MV)
- elektrofotografiya, electrophotography (1939-Prat S.),
- Images obtained by means of high-frequency currents (1939 Kirlian SD)
- Kirlian-effect, Kirlian effect, Kirlian image, Kirlian photography, Kirlianograms, Kirlian Photography, Kirlian images,
- electric high-frequency discharge, Hugh frequency electrical discharge, EVR (1968-Antonov)
- elektrobioluminestentsiya, Eble, Eble-study (1970 Oxen VN)
coronene discharge in the high-frequency field, Corona Discharge Photography, CDP (1973-Tiller W.)
- fotopsihografiya, Photopsychography (1974-Parker H.),
- Contact electrophotography (1975-Lane),
- Kirlian Cinematography (1976-Dugger Clark).
- bioelektrografiya, bioelectrography (1978-Konikievicz LW),
- elektrobiointerferogramma, electrobiophotography (1978-Andre Laugt),
- elektrotopografichesky effect (1981 Kravtsov AE)
- elektronografiya, electronography (1983 Dumitrescu I.)
- selective high-frequency discharge, selective high frequency discharge, MID (1985-Antonov A)
- gazorazryadnaya visualization, GDV GDV-grams of GDV-graphy, GDV spectrography, Gas Discharge Visualization, GDV (1986 Korotkov KG)
- Energy Emission Analysis, EEA (1986 Peter Mandel)
- vysokochastotnaya Photo, RF photograph (1998-Antonov V.),
- plazmografiya (1994 Bondarev VM)
- BEO-Grams, BEO-graphy (2000 Korotkov KG)
- bioplazmogramma (2000 Inyushin VM)
- gazorazryadnaya Photo (2001 Shustov MA)
- bioenergografiya, biogolografiya, BEO-tomography biogolograficheskaya tomography (BHT) (2001 Shadura MI)
- biofotonografiya (2007 Spielmann AA)
- gazorazryadnoe image GRI (2009 Boychenko)
- elektrofotonika, electrophotonic imaging, EPI (2010-Wisneski LA),
- elektrofotonika, electrophotonic imaging, EPI (2010-Wisneski LA),
- elektrofotografiya, elektrofotografic image
- bioelektrofotografiya, bioelectrography,
- electrophotonic analysis,
- stimulated elektrofotonnaya emission
- svchenie in high-frequency electric discharge,
- high-frequency high-voltage photography.
1766-Joseph Priestley, English explorer, registered the colored circles which are obtained by electrical discharge on a metal surface («Priestly's rings»).

1777-George Lichnenberg, a German scientist, check the electrical discharge on a dusty surface, "Lichtenberg figures".

1777 Georg Christoph Lichtenberg (Georg Christoph Lichtenberg) (1742-1799) German scientist.

Fig. 1-1-1. Georg Lichtenberg.

Professor of the University of Gottingen Lichtenberg, studying electric discharges on a powder-coated surface of the insulator (dusty ebony plate), observed the formation of a variety of shapes. In the future, these figures were recorded on a photographic plate and got the name "Lichtenberg figures" (Lichtenberg figures). May 3, 1977, he reported his discovery to the Royal Society of Science of Gettingen. February 21, 1778 Lichtenberg was made public a report entitled "A new method to investigate the movement of electric fluid." Lichtenberg figures this distribution pattern spark channels formed on the surface of the solid insulator at a sliding spark discharge. The spark discharge channels having a strong high pressure and temperature that deform the surface of the dielectric, capturing her Lichtenberg figures. The weak discharges Lichtenberg figures correspond to the electoral dielectric polarization, and can be made visible by sprinkling the surface of the dielectric powder or a special photographic plate showing planted during discharge under the dielectric layer. The figures of Lichtenberg and near the anode cathode differ greatly in appearance, so they can be used to determine on which of these electrodes developed spark channels (polarity spark discharge).

History of the discovery. For the study of electric phenomena created a large Lichtenberg electrophorus device. It consisted of an isolated metal disk with a diameter of 2 meters. The device allows to produce electrical discharges length 40cm. The room in which he was working a metal plate, it was very dusty. In the spring of 1977, after a break in the tests on the metal plate has accumulated a lot of dust. But what was very strange, the dust was distributed over the surface of the plate is not uniform, but in the form of stars. When he wiped the dust, the figure arose again. He conducted an experiment applied to the metal disc discharges from a Leyden jar. The plate began to appear various figures.

He's discovered that these shapes can pass directly onto paper, in fact, invented the electrostatic printing. To this end, he covered a sheet of black paper with adhesive paste, and leans against the dusty figure. So he was able to get several copies of the same figure.

He's developed ways to control mold and creating different shapes and framed them under glass, he made a stunning picture.

He's found that the figures from the positive discharge have star-shaped, and the negative discharge, rounded shape.

-To Visualize figures he tried various powders: dust, powdered sugar, powder sulfur and rosin, amber, cinnabar, licopodium, wheat flour, metal filings, etc.
-one Investigated discharge under reduced pressure, and found that the figure increase in size.
He's invented a device for recording atmospheric electricity. The device consisted of a rotating
cylinder covered with resin. The metal electrode is moved along the cylinder and record discharges. So
he invented klonograf.
His discovery was the trigger for a large number of experiments that were conducted to determine the
nature of electricity.

Fig. 1-1-2. Pictures positive (left) and negative (right) bits. Pictures Lichtenberg. 1777.

Fig. 1-1-3. Lichtenberg figures. 1777.

Fig. 1-1-4. Lichtenberg bits used to create the pictures.

1777-Lichtenberg, Georg Christoph. De Nova Methodo Naturam Ac Motum Fluidi Electrici
Investigandi (Concerning the New Method Of Investigating the Nature and Movement of Electric

The effect of discharge in the high voltage field observed in the experiments Tesla, Rengo and D'Arsonval, at voltages above 30 kV (especially good discharge visible after a 100kV).

Two major invention that allowed to implement a method of photographing images of various objects in the high-frequency field:
1839 invention of photography Daguerre,
1851 creation Ruhmkorff coil.

1839-Jacques Daguerre, a French researcher, has published a method for producing an image on a copper plate covered with silver.

He put a coin on a glass plate and gave it a few sparks from the electric machine. If you then breathe on the glass, it was seen the image of the coin. He called these figures «electrical breath figures».

1851-Heinrich Daniel Ruhmkorff, German inventor. In 1851, he patented the first version of its induction coil. This further coil is widely used for electrophotographic images.
The device Ruhmkorff coil. The primary winding of the coil, consists of several tens of turns of thick wire wound around the core, and is energized through the electrochemical cell (chemical current source). An important element of the chopper coil is in the form of a hammer, which is attracted by the core to create the primary winding of the magnetic field due to flow through it from the DC power source. Thus, the hammer breaks the circuit and the magnetic field disappears, the hammer returns to its original state, closing the circuit again. The change in the magnetic field reacts secondary winding consisting of thousands of turns of a thin wire, is wound over the primary winding. This leads to a second winding of high instantaneous currents of different directions (closing / opening). Due to a member of the condenser coil, the coil stores energy in a magnetic field, which further increases the currents in both windings, and allows the air gap between the punch pin of the secondary winding.
1876 - I. Goldstein Gittorff (1850-1931), German physicist, received a specially designed discharge tube coin image using it as a cathode. These experiments were carried out under reduced pressure of the gaseous medium. Relief cathode (coins) was seen in the light of the cathode-ray fluorescence on the opposite wall of the cathode of the discharge tube.

1871 - Cromwell Fleetwood Varley (1828-1883), English engineer-electrician. The interrelation of the phenomena of electricity and spiritualism, studied electrical discharge in gases.

1877 Lachinov Dmitry Alexandrovich (1842-1902), Russian physicist and electrical engineer, SPGU, Professor of Forest Institute, St. Petersburg.

Fig. 1-1-7. Lachinov DA

Since 1877 Lachinov worked on the gas discharge visualization. Building on its cycle of meteorological research, continuing to work on the study of the electric arc and pictures in the late 1870s and early 1880s Lachinov published in the "Russian Invalid" a number of articles dealing with different aspects of the research programs, their complex application. In the summer and autumn of 1887 in the physics laboratory of the Forest Institute Lachinov simulated form of atmospheric electricity, differentiation electrodischarges in a gaseous environment. With the assistance of the photographer V.Monyushko photographed or recorded on the plate bromzhelatinovoy direct impact sparks. During the first experiments filmed bright discharge (spark induction coil connected to a capacitor) or dim when entered in a long chain of the resistance gave a discharge discharge. The second and third series of experiments was carried out without a camera, the category of sliding along the surface of the dry bromzhelatinovoy plate and left her a trail that the manifestation is made visible, nothing else, as one of the first examples of the so-called gas discharge visualization. On the progress and results of the experiments reported in V.Monyushko V (photographic) department Russian Technical Society (St. Petersburg Engineering Society) October 9, 1887. He spoke about the possibility of photographing using a variety of metal objects spark.

October 27, 1887 Lachinov posts made in Russian Physical and Chemical Society (RFHO). Lachinov DA He invented a device for detecting defects of electrical insulation.

1879 DA Lachinov Electrophotography. Russian invalid. 1879. №98.
1880 DA Lachinov Phosphorescence and its application to the photos. Russian invalid. 1880. №331.
1887 DA Lachinov "Russian Invalid". 1887, №220, №225. November 26th
1888 DA Lachinov On studies of electrical discharges through the photos. Journal of Russian Physico-Chemical Society. 1888 of the Financials. vol.3. s.44-49.
1892 Yakov Narkevich-Todka (1847-1905), (Jakob von Narkiewitsch-Jodko)
Belarusian scientists announced developed a "method for registration of energy emitted by a living organism when exposed to an electric field," which they have been called "electrography". Plate lights up blowing out direct discharges. They were given the task to register the process of absorption and emission of electricity by the body. Research in this direction, he devotes most of his scientific career.

Fig. 1-1-8. Narkevitch-Yodko.
Fig. 1-1-9. Electronoqraphie received Narkevychi-Yodko.
Fig. 1-1-10. Electrography 1-hand. 2-finger, three-two people sympathetic to each other, 4-two people with antipathy, 5-toes with strong emotional arousal, 6-leaf plants.
The methodology by which they were obtained more than 1,500 images, was as follows. Coil Ruhmkorff, excited by avtopreryvatel current from the battery cell. One pole of the secondary winding of the coil was connected to a high tower located on an isolated metal rod from her, the other was connected to a metal plate, which is placed in a test tube with acidified water. Taking hand electrode tube and the other part of the body (e.g., hand) researcher for several seconds touches the photosensitive plate. The plate after development is negative for the photos. For the safety of a person in the air gap between the terminals of the secondary winding, he used an electric differential cell will reduce the amplitude of the low-frequency part of the spectrum of pulses issued by the coil.

Through numerous experiments, he noticed a difference in the electrographic picture of the same parts of the body healthy and the sick, weary and excited, sleeping and waking people. It predicted the possibility of using the method to determine the psychological compatibility between people.

The method of electrophotographic Ya.O.Narkevich-Iodko applied in medicine to diagnose diseases. Based on the analysis of images of objects of wildlife, a collection of more than 1500 samples, he found certain patterns and found that the shape of electrophotographic paintings significantly dependent on the physiological state of a person, which suggested the possibility of using the electrophotographic method for the diagnosis of various diseases, for the registration of bioelectric processes in the human body, and at the same environmental conditions and physiological state of human electrophotographic pattern depended on the emotional state of the subject. According Ya.O.Narkevicha-Iodko, the method allows to obtain comprehensive information about the normal and pathological activity of tissues, organs and systems of man. Ya.O.Narkevich-Iodko one of the first declared principles and perspectives of integrated medicine, creatively combining traditional Western medical knowledge and traditional oriental medicine, used the means of correction of metabolism and field correction. From a letter Ya.O.Narkevicha-Prince Iodko A.Oldenburgskomu "Currents in the human body is closely related to the state of atmospheric electricity, and solar activity. The human body, producing electricity in muscle tissue, is a kind of electric battery, which is continually exchanged charges with the environment ... I received results give me the opportunity to judge the degree of influence of large artificial currents and atmospheric electricity on the pathological condition of the body. The success of treatment depends on the respective state and the voltage of atmospheric electricity. "In the mid-1890s, he developed a method of electrotherapy, based on the local impact of electric current on certain parts of the body. The main difference between developed Ya.O.Narkevichem-Iodko electrotherapeutic method consisted in the fact that the effects on the body are not conducted blindly, but on the basis of data from the electrographic images at well-defined
points on the human skin, which corresponded to the maximum intensity of the discharge electric
discharge, the so-called acupuncture point. The scientist also practiced non-contact method for the
treatment of patients with areas of the human body induced currents.
Also Electrography Narkevitch-Yodko developed an interesting method of diagnosing diseases. He
used to diagnose Heusler tube. If the discharge tube to bring a sick body, the intensity of its discharge
changed.

1865 Narkevitch-Yodko finished Minsk provincial classical gymnasium and went abroad.
1969 entered the medical faculty of the University of Paris. He studied in Vienna, Paris, Florence.
1872 he returned home, he conducts scientific experiments.
1888 Metoostantsiya transferred to the estate of over-Neman (80km south-west of Minsk).

1890 Narkevitch-Yodko met with Nikola Tesla in 1890 at the International Exhibition in Paris. And I
brought them a topic that is very interested in both absorption and emission of electricity the human
body, as well as methods for their registration. Narkevitch-Yodko introduced as the great Serbian
physicist with their own achievements and discoveries, and to work on the registration of electricity
through the photos held DA Lachinov and NN Hamontovym. Tesla was delighted with the Russian
research scientist, and strongly urged to continue work in this direction.

Since 1891, he became a member-employee of a physical division of the Russian Physico-Chemical
Society.
1892 His first message to the electrophotographic he made at a meeting of the St. Petersburg meeting
of farmers January 28, 1892.
Since 1892 was a member of an employee of the Imperial Institute of Experimental Medicine in St.
Petersburg together with Pavlov IP
1892 results of the research were presented at Electrography Narkevitch-Yodko committee of experts
of the St. Petersburg Institute of Experimental Medicine. Narkevitch-Yodko reports developed his
method of registration of energy emitted by a living organism when exposed to an electric field. He
calls this technique "electrography".
In 1892 he became an honorary member of the Physico-Mathematical Society of Galileo in Florence.
1992 He made a presentation before the commission of scientists of the Imperial Institute of
Experimental Medicine.
1892- was elected an honorary member of Physico-Mathematical Society of Galileo in Florence, Italy.
1893 he made a speech at a conference on electrocardiography and electrophysiology at St. Petersburg
University.
1893 Narkevitch-Yodko traveled with lectures on science centers in Europe: Berlin, Vienna, Paris,
Prague, Florence.
In 1893 he was elected to the Italian biomedical company,
In 1894 he was elected to the French Society of electrotherapy at the Paris Academy of Sciences and
the French Astronomical Society.
1896 demonstrated his method at an exhibition in Berlin in August 1896.
1898 5 th photographic exhibition, organized by the Russian Imperial Technical Society, an electrical
engineer Narkevitch-Yodko demonstrated unusual "electrographic" photos, pictures of coins, leaves,
plants, fingers. The images were obtained without the use of the camera.
The magazine "Amateur Photographer» №5 for 1898 published a sensational report from the 5th
photographic exhibition in St. Petersburg. "At the end of the department placed a little-known but very
interesting exhibit Narkevitch-Yodko, represents images of different discharges electricity, reproduced
on photographic plates. Here you can see the effect of a dust, air and condition of the subject. For
example, a dried leaf and a piece of the living give different prints on the plate, arms and hands of a
healthy person produces a paralyzed subject on the record completely different picture. "
1899 Council of the Franco-Russian Exhibition in St. Petersburg for a series of electrographic images
Narkevitch-Yodko awarded a gold medal and was awarded a diploma "For the constant improvements
in electrical engineering."
1900 at the International Congress of the French scientist was awarded the title of professor Electrography and magnetism. His contributions to science have noticed even in the Vatican. Narkevitch-Iodko was accepted by Pope Leo XIII, who granted him the title of papal chamberlain «cameriere di spada e cappa».

The most complete electrographic collections donated Ya.O.Narkevichem-Iodko, Prince possessed A.P.Oldenburgsky, curator and organizer of the Imperial Institute of Experimental Medicine, the Institute of Natural History in Vienna, Paris Museum of Charcot (Salpêtrière). His images graced electrographic halls of many museums in Europe and were often published in books and periodicals of the nineteenth century. The most complete, they are presented in the books of Russian natural science popularizer and V.V.Bittera M.V.Pogorelskogo, magazines «Kraj» and "Field". Separate electrographic images are stored today in Paris, the National Center of Art and Culture Georges Pompidou in the archives of the French Astronomical Society. The last time they were exhibited in a special exhibition «Traces du Sacre», organized by the center in May and August 2008. One of the most famous images electrogram-hand K.Flammariiona astronomer, made Ya.O.Narkevich-Iodko in 1896, was posted on the front page of the exhibition catalog. His work is highly valued in clinical school Jean Charcot. The museum Charcot in Paris and today kept electrographic images Narkevich-Yodko.

It is known that Narkevitch Iodko-YO He worked closely with the French astronomer Camille Flammarion, director of the Institute of Charcot in Paris Baradyukom Hippolytus, was familiar with the German chemist and naturalist Baron Carl Reichenbach, a prominent French bacteriologist Emile Roux, an Italian psychiatrist Cesare Lombroso, French Psychophysiology A. de Rocha.

1889 Narkevitch Iodko-YO The farmer. 1889, №32. s.360-361.
1891 produced discharge photos. Photographic Gazette. 1891. s.260-261.
1982-Světozor, nr 34, 1892, str. 405.
1887 Hamont Nikolai Nikolaevich (1856-1893), the Russian physicist and educator, St. Petersburg. Independent work Hamontova relate primarily to the scientific application of photography: he examined photographs of electric sparks, did successful experiments produce color photographs of the spectrum by the method Lippmann. He described an original method for studying the structure of the jet of water or loose body using photos. In 1889, he used the method of pulsed light with a spark device for recording the dynamics of fast processes.

Fig. 1-1-13. Hamont NN

Fig. 1-1-14. Pictures of the solar corona Hamontova NN (Crown from 1860 to 1896)

1888 Bartholomew I. Navratil, Novratil, (1848-1927), Czech physicist, Professor.

Fig. 1-1-15. Navratil B.

Navratil B. discovered the phenomenon of electrography and electrophotography used the term (electrography) to denote the effect. Full description of experiments, he published in 1911. He took photographs of objects by placing them directly on the emulsion. He used the voltage from 15 to 25kV for electrophotography. Along the edges of objects encountered discharge. Dead objects are not part of the light, and damp objects discharge better.
1889-Novratil, B (1889) Cas. propest. math. a. fys. 18: p.213.
1890-Novratil, B (1890) Cas. propest. math. a. fys. 19: p.117.

1890-Dr. Hippolyte Baraduc (1850-1909) a French physician and parapsychologist. He was engaged in experiments in parapsychology "photographing thoughts." He's got pictures of love, hate, joy, grief, fear, compassion, piety, etc. He created biometer radiation detecting human.

Fig. 1-1-16. Hippolyte Baraduk.

The method of photographing Baraduka based on the activation of the electric field by means of coil Rumkofa (Rumkorff coil). Scientific experiments with ultra low and ultra high frequency electromagnetic waves. He was able to determine the frequency and type of modulation of the field of the subtle body of living people and other objects. In 1896 he created electrophotography hands and leaves. Under laboratory conditions, it reproduced the complex energy structures called them fireballs.
Salpetriere Hospital in Paris Eduard Baraduk with Louis Dargetom they wonder about whether they can take pictures of thinking. The recent discovery of X-rays showed that the bone can even take a picture, so they have suggested that the idea is a set of electrical impulses. As part of their experiments, they stuck to the forehead of the subject of the film and fixed induction coil between a man and a camera in the hope that the high-voltage pulses to give them at least some shot. Although both were sincere, it should be noted that even if Darget and believed that he was able to film the idea is still more of his pictures were like ordinary flash light. It is worth noting that in 1909 Baraduk was at the bedside of his dying wife. However, in her last moments, when she began to die, he picked up a camera and began to take pictures.

Fig. 1-1-17. Photographing fancies.

Fig. 1-1-18. Photo discharge in the interaction of three leaves of willow and discharge hands.

1890-Smith Frederick Jervis (1848-1911) British explorer, Millard Lecturer Mech. et Phys, Trinity College, Oxford, UK.

He created the device «Inductoscript» (Induction Current) recording was carried out with the help of induction currents. The discharge was created with the help of the inductor, and fed to a coin that was lying on the plate. To register bromoserebryanaya photographic images used.

1892-F. J. B. A. Ep. (1892) 644-;

By recording using various gases. The best results were obtained when filling the working volume of oxygen. In a vacuum, no registration took place. When the temperature registration takes place more quickly, but the quality of the resulting images are not changed.

Fig. 1-1-19. Installation scheme Inductoscript. A, B-cover, C, D-base copper-E disc, F-recording plate coin K-copper wires, L-tube for injecting various gases.

Fig. 1-1-20. Image coins obtained by Inductoscript.
1891-Albert de Rochas (1837-1914), Paris, France, French parapsychologist, the head of the Ecole Polytechnique in Paris.

Fig. 1-1-21. The discharge of different objects, and magnet, b-man's head with a magnet, d-plant, f-hand man, g, h-Rasen.
1891-Albert de Rochas. Le Fluide des magnétiseurs by Albert de Rochas, Paris, 1891.
1891-De Rochas: links "Die Ausstrahlung des Magnetiseurs", 1891
1891 Fernando Sanford (1856-1948) Spanish, a professor at Stanford University (USA). In 1879, during an internship in Germany, he worked with Hermann Von Helmholtz. In an article published in 1894 in Physical Review he wrote that in 1891 he conducted research method of electrical pictures. The article was published pictures of his fingers. He received image coins on paper coated with a thin layer of gelatin and silver bromide, which was located between two metal electrodes. Then he got an image on a photographic plate glass. After acquaintance with Article Crofts WB He began to experiment with coins. He believed that the discharge on the sides of the metal coin is an artifact, a nuisance, and tried his best to get rid of this effect. He did not know that this is the main effect, and later studied Kirlian. He tried for several years to eliminate this effect, he did not succeed, and he took up other studies.

![Fernando Sanford, Some experiments in electric photography, Phys. Rev. (Series I), Vol.2, pp.59-61. 1894.](image)

Fig. 1-1-22. Pictures taken by Fernando Sanford.

1894-Fernando Sanford, Some experiments in electric photography, Physical Review. (Series I), 1894. V.2, p.59-61.

1905-Published in Photographic Amusements including a Description of a Number of Novel Effects Obtainable with the Camera by Walter E. Woodbury (New York: The Photographic Times Publishing Association, 1905).

1891 CBM Messer (Messala) B. Petersburg doctor. In his book, he described the amazing ability of photographs obtained in a gas discharge, reflect a certain physiological state of human and animals. In the book, the discharge was seen as evidence of a "physiological polarity energy," or so-called living magnetism. The book describes his experiences on bioelectrography, the photos he calls "energogrammami." The book also describes the experiments on photography in high-voltage discharge, conducted in the years 1882-1883 Narkevychi-Yodko. On the title page (second edition) has been represented author Dr. Messala Pogorelsky with a discharge halo around his head.

1899 D-pv Month. Pogorlskiy. Elektrofosfeny energografiya and as proof of the existence of polar physiological energy or the so-called animal magnetism in their significance for medicine and science. With 48 photographs and photo type 2 in the annex portraits and facsimiles of the author. St. Petersburg, Type. V.Demakova. The new lane. 7. 1899. 105c.

1912 MV Pogorelsky Elektrofosfeny and energografiya. 2nd ed. M. 1912.
Д-ръ Мес. Погорълскій.

ЭЛЕКТРОФОТОСФЕНЫ И ЭНЕРГОГРАФІЯ
КАКЪ ДОКАЗАТЕЛЬСТВО СУЩЕСТВОВАНИЯ
ФИЗИОЛОГИЧЕСКОЙ ПОЛЯРНОЙ ЭНЕРГІИ,
ИЛИ ТАКЪ НАЗЫВАЕМОГО
ЖИВОТНАГО МАГНЕТИЗМА,
И ИХЪ ЗНАЧЕНИЯ ДЛЯ МЕДИЦИНЫ И ХОЗЯЙСТВА.

ОБ 49 ФОТОГРАФИЯХЪ И 9 ФОТОГРАФІЯХЪ, ВЪ ПРИЛОЖЕНИИ
ПОРТРЕТА И ФАКСИМИЛЕ АВТОРА.

КАТ І ζωη ἵνα το φῶς τῶν ἀνθρώπων.
ΚΑΙ το φῶς ἐν τῇ ἐκτός φαίνεται.
'Ημέρα Α', 4–5.

С-ПЕТЕРБУРГЪ.
Тип. В. Демакова, Новый пер., 7.
1899.

Fig. 1-1-23. Cover of the book "Elektrofotosfeny and electron diffraction." 1899.

1892 Nicola Tesla (1856-1943), Serbian (US) inventor.
1892 In his laboratory in Colorado, Tesla spent a lot of experiments with high voltage and high-frequency currents. In his lectures and demonstrations in London and Paris Nikola Tesla demonstrated the discharge of his own body and the possibility of gas discharge discharge photographing living organisms in high-frequency currents with the camera. He reproduced the discharge items, corona discharge, and photographed on a photographic plate. His method he called "gas-discharge visualization" of his experiment, he wrote: "The human body has been exposed to a high-frequency electrical generator with a voltage of 2.5 million volts. It was an unforgettable effect. Away from the body long discharging bits, like the tentacles of an octopus. From spine beams of light fade. When a man pulls his hands, with the fingertips roaring flames erupt. This effect he called "cold fire" «Cold Fire».

In 1896, the United States, in Colorado Springs, Nikola Tesla put in a physical lab is interesting, but it is very risky experiment. On the generator capacity of 1 million volts it was placed ebony insulator large. He was placed on a metal plate connected to a DC generator. A similar plate was reinforced top. It is also connected to the generator. Nikola Tesla became the lower metal plate, which has been hard rubber pad and was in the field of high voltage. Picture taken at this point showed a bright discharge around the entire body of the scientist. Thus, for the first time in the history of mankind was caught discharge around the person. This phenomenon is called the Tesla effect.

Tesla believed that this procedure is more effective for cleaning the body than water and a shower. He believed that in the future there will be showers and soap, and cleaning the body will be produced by electricity.

Tesla discovered a great therapeutic effect on the action of high-frequency field. When high frequency current is distributed over the skin surface (skin effect), and does not affect internal organs. In 1903, the Wardencllyfe laboratory produces and sells high therapeutic generators medical community across the country. Article 1894 The New York Times, Tesla describes the possible dangers if the voltage and frequency or a too low: In this case, the image of "streamers" cause a tingling sensation as the needle. If the oscillation frequency is quite low, the skin is likely to be broken due to a tremor, blood will be sprayed with great force in a spray or jet is so thin to be visible.

http://www.teslamemorialssociety.org-The Tesla Memorial Society, William H. Terbo, Executive Secretary.
http://www.pbs.org/tesla/
http://www.teslatechnologyresearch.com/links.html

1892-A.W. Clayden, Principal of the Albert Memorial University College, of Exeter, England. I observe the effect of the discharge object in an electric field in the early experiments with a model of Tesla transformer.

In 1893 the St. Petersburg University organized a conference on the electrophysiology and electrocardiography. At the conference, he gave a presentation about their work Narkevitch-Yodko.

We describe a modification inductoscript. It is noted that vacuum discharge effect is absent. The effect can be detected by a bromide plate.
1900- Francis Eugene Nipher (1847-1926) American physicist and professor of physics at Washington
University in St. Louis. He repeated the operation and Navratil Narkevich-Yodko.
Eke. v.87.
1900- Francis E. Nipher. On certain properties of light-struck photographic plates. History of
photography, Reel 136, no. 1488.
1900- Francis E. Nipher. Positive photography, with special reference to eclipse work. Transaction of
the Academy of Science of St. Louis, vol. 10, no. 9.
1901- Francis E. Nipher. The relation of direct to reversed photographic pictures. University of
Michigan Library. 1901. 52pages.

Fig. 1-1-24. Photo digits photos in the bottom row are obtained at a higher voltage. On the left a
positive discharge, the right negative discharge.
1890-Schnauss Hermann, Photographischer Zeitvertreib, Lisegangs Verlag, Leipzig, 1890. 135 pages.
1903-Schnauss Hermann, Photographischer Zeitvertreib, Lisegangs Verlag, Leipzig, 1903.

Fig. 1-1-25. Electrography hand and a brass disc. Hermann Schnauss. 1900.
From the book Fotografie und das Unsichtbare 1840-1900, hg. von C. Keller [et al.], Wien, 2009

He studied physics and invented electrophotographic (electric discharge) camera which he called "Bioelectrographic Machine". He developed a method of photographic electric discharge. He received hundreds of pictures of various objects discharge, including humans. He called the discharge around the human body «Perianto». He conducted the study from 1904 to 1912. During the eight years of research, he made hundreds of photos. He called the discharge around the body «Perianto». But his invention was not registered as the device was confiscated church. Some of the drawings have been preserved in books devoted to his biography. In Porto Alegre is a museum dedicated to Morua.

1905-Poyet investigated the discharge of the objects in the high-frequency field.
1907 William Bitner Casimir Wilhelm (1865-1921), Russian journalist and popularizer of science.
1899 V.V.Bitner. Werth or not to believe? The excursion to the mysterious. St. Petersburg. Printing PP Soykina. 1899. 408c.
1903 V. Bitner Hypnotism and related phenomena in science and life. 1903.
1907 V. Bitner In the mysterious region. Scientific excursion into the mysteries of human nature. St. Petersburg. 1907 318s. Book on Electrography with lots of images obtained in experiments Narkevich-Yodko.

1911 Wolf Capek (Wolf-Czapek Karl Wilhelm) (1877-1913), a German scientist, conducted research under the influence of discharge discharge.

1915-Gernsback Hugo (1884-1967), American inventor, was engaged in the creation of the spark images. He met with Tesla and decided to repeat some of his experiments.

Fig. 1-1-28. Electric-image: 1 Microphone. 2-steel bar, 3-inscription-4 image on a zinc plate.

1920-Gernsback H. Bathing in cold fire. Is Electricity to Take the Place of Soap and Water in the Ultra-Modern Bathroom? The Register, Sandusky, Ohio, Sunday, May 9, 1920, Page 9.
1916-27 October EE Gorin (1881-1951) submitted an application for an invention "electrophotographic device" using the principle of imaging. Later this direction, developing in accordance with the patent CH.F. Carlson (1906-1968) with a priority of 4 April 1939 was called "xerography."

1917-Frederick Finch Strong, lecturer in electrotherapy, Tufta Medical School, Boston (USA). In a lecture at Startlhig Manner, he showed the discharge of the body. The applied voltage with a frequency of 2 MHz. When exposed to high voltage frequency hand and fingers were offered to the photo paper. On the left image photo paper.

Fig. 1-1-29. The discharge of the body.

Fig. 1-1-30. Thumbprint field hands and fingers on the photo paper.

George, Roscoe Henry. (1896-) Purdue University. West Lafayette, Indiana, USA.
1913-Allen Herbert Stanley (1873-1954) British explorer.

PHOTO-ELECTRICITY

THE LIBERATION OF ELECTRONS BY LIGHT

WITH CHAPTERS ON FLUORESCENCE & PHOSPHORESCENCE, AND PHOTO-CHEMICAL ACTIONS & PHOTOGRAPHY

BY

H. STANLEY ALLEN, M.A., D.Sc.

LATE ASSISTANT IN PHYSICS AT UNIVERSITY OF LONDON, BART'S COLLEGE

UNIV. OF CALIFORNIA

LONGMANS, GREEN AND CO.
32 PATERNOSTER ROW, LONDON
NEW YORK, MONTREAL, AND CALCUTTA

PHOTOELECTRICITY

The Liberation of Electrons by Light

H. Stanley Allen

Fig. 1-1-31. Book cover.

Vladimir Nekrasov, 1932 (-1943) Russian emigre engineer.
1932 Petersburger, mathematician and engineer, regardless previously Kirlian in 1932, came to the idea of exposure of photosensitive materials in high-frequency electric fields and produce holistic images of material objects with missing fragments of their original appearance.
Nekrasov conducted experiments in Gatchina hospital with soldiers of the First World War, which was amputated limb. It is placed between the high-frequency electromagnetic emitters soldier amputees and photographed them contactors own design. On the plywood board coated with colloidal silver after development appeared images of people as they were before the injury.
But Nekrasov did not stop there. Perform complex mathematical calculations, he invented, in his words, "a trap for non-existent." For its construction were needed generators rotating magnetic fields, the increases, the damping and electronic distribution of multiphase flows. It is here Nekrasov turned to Tesla for help. So Nekrasov appeared in America in Colorado Springs.
After reading the crazy ideas brother Slav (Tesla was a Serb), enthusiastically accepting his hermit, credo and a willingness to work 30 hours a day, an electrical genius has said, "We did it!" Work has begun to boil.
We were ordered giant pulse generators, filled with copper needles plated bronze mirrors, radiators and the "heart" of the installation switch torsion radiation. The experience took place in July 1938 at the ranch buddy Tesla Patterson. Nekrasov wrote in his diary: "corona were appalling. Our heads broke up in pain. Ozone, displacing oxygen in the air, burned through the lungs. Manipulation of the switch led to surround the radiating plates between a color image of two cityscapes. They collide, and the influx of destroying each other until dispersed. I, fortunately, was able to trigger the shutter contact apparatus. Chef turned off the installation. The skin itched, overcome by nausea. Colloidal matrix lowered into the developer. Success! The first imprinted on the image of the city, I found this
monument Kant Konigsberg! The second did not recognize. Helped 'Illustrated Atlas of the World. " Lions, for sure! But what war? Why these collisions between the cities? We are lost in conjecture. "

Nekrasov sure, based on the extracted results with such difficulty, the rotation of the pulsating electromagnetic fields. However, as it turned out, the first result will be more than modest compared with those which followed on. Between spaced 200 meters mirrors emitters placed antique engravings everyday scenes, fine art, photography greats fighting. And what? The flat image, becoming bulky, came to life, their characters were set in motion. But then again, each holding in the air from the force and a half minutes and then crumbled like a broken pane of glass, Merkle. Contact the accuracy of the machine properly recorded phenomenon. Eventually, Tesla and Nekrasov came to the conclusion that the learned transmit transformed from static images into living at a distance of more than five kilometers of where they are "materialized" a similar setup that works on reception. Tesla and Nekrasov were placed between huge mirrors pictures of different people and other flat images. It was supposed to broadcast images using special emitters over long distances and to work with the help of real people who are creating history.

Stages of inventors vigilantly monitored security services. For what purpose? New York Tesla biographer Steve Kingsbury suggests: "If Tesla fell into the arms of the military departments, and brought to the end started, he would have given them into the hands of the most powerful weapon has incredible property extrasensory intervention in the decision-making powers that be. Then photos of Hitler or Stalin, changed virtuality to animate, under the influence of Satan rotating fields, like puppets in the hands of the puppeteers, unquestioningly any order to fulfill his political opponents. Featuring exclusive decency, Tesla, of course, did not admit the idea of being an accomplice in this insane adjustment history."

In 2002 alone, the archives declassified American intelligence agencies has new information. When the 7 January 1943 Tesla died of acute heart failure in the room "New Yorker Hotel" is there, pushing the police were FBI agents, who confiscated the impressive size of a suitcase with Tesla's papers. In the same hotel that evening and died Nekrasov, and also because of the congestive heart failure. His papers (ten densely scribbled sheets) were also seized the FBI ...

The modern history of the Kirlian method.

1939 Semyon Davidovich Kirlian discovered the effect of gas discharge discharge.

1945 MSU professor GV Spivak using discharge generated direct current pulses, getting quite successful "electrographic" image metal objects.

1948-Josef Zahradnicek, Czech scientist. He studied the inhomogeneity of the field in the condenser (Maxwell currents). Registration is using a photographic plate placed in a specially designed condenser of 1-10 seconds.

1949, the State Committee for Inventions and Discoveries SD Kirlian It was granted a copyright certificate №106401. A method of producing photographic images of different kinds of objects. (Application by 05.09. 1949). The invention was immediately classified.

1956 graduate of the Tomsk Polytechnic Institute Vorobiev AA and VD Kuchin We investigated the mechanism of the emission of liquid and solid dielectrics in the pre-electric fields.

1964 was a book Kirlian SD Kirlian VH In a world of wonderful places. M. 3nanie. 1964. 40c. +

1966 Laboratory of electron optics of the National Center for Scientific Research in Toulouse (France, director of Dupuis), the first professor was engaged by photographing a biological high-frequency field.

1968 Professor Newton Milhomens (Newton Milhomens), Brazil, began to study with a camera of its own design. He was engaged in the definition of the status of patients in the clinical psychological hospital.

1970 AE Kravtsov Reznikov, MA and later Fok MV (FIAN, Moscow) began to study the mechanism of formation of a latent image in the silver halo-of emulsion layers under the influence of an electric field of high tension.

1970 Dr. Paulo Teixeira de Castro (Dr. Paulo de Castro Teixeira) (Brazil) led the study being seen receiving homeopathic remedies in the pictures. His research, he has published several books published in Portuguese.

1970 After a visit in 1970 by the American psychologist T.Moss (Thelma Moss) of neuropsychiatric University (Los Angeles) to Adamenko VG Moscow and Inyushin VM Alma-Ata their work become known abroad.

1971 Firm Edmund Scientific Co. (USA) started serial production of the device to register Kirlianograms «Kirlian Lab».

1972 Dr. Hernani G. Andrade (Dr. Dr. Hernani G. Andrade) (Brazil) has created the Kirlian camera. He conducted a study of luminescence of people and plants.

1974 Semyon Davidovich Kirlian was awarded the title of "Honored inventor of the USSR."

1974 United States, Dr. Stanley parapsychology Krippner (Stanley Krippner) published the book "Kirlian Aura", in which he described, adhering to the scientific approach, all that was known at the time of the Kirlian effect.
1974 scientists from different countries came together in an international association for the study of Kirlian effect (The International Kirlian Research Association, IKRA).

1975 The company Edmund Scientific Co., (USA) began to produce Kirlian camera cost about $ 100.

1975 US, doctor of psychology and a professor of the University of California Thelma Moss published his research in the book "The Probabiliti of Impossible"

1975 Brazil, Professor Newton Milhomen published a guide to deciphering the Kirlian photographs in medical diagnostics for psychophysiological state of human health.

1976-1978 years. Proven high reliability of Kirlian diagnosis of the physiological condition of the body. Work was carried out in the United States Organization for Space Research NASA (Apollo program Saturn). Author Frederick Bell.

1976 MV Oxen (Moscow) has created a Kirlian camera "Kirlian Aura-2000".

1977 The German company has created Biomed Kirlian camera Kirlianfotograf Standart.

1980 Konstantin G. Korotkov, the first publication on the formation of gas discharge images. 1981 SF novels (Dnepropetrovsk) has created a device DIV-1 (flaw Pulse High) for nondestructive testing.

1981 in the USSR Dr. P.E.Erasov using high fotozond received biofield pictures of internal organs, and, it turned out that light and every drop of blood.

1982 Korotkov KG He defended the thesis of the candidate of physical and mathematical sciences on discharge visualization.

1983 Germany, doctor Peter Mandel (Peter Mandel) patented the Kirlian camera system and published in medical diagnostics, based on compliance of certain sectors in the crown of light fingers and toes specific organs and systems of the human body, and the view of the corona radiation is determined by the stage of the disease.

1983 Brazil, developed and commercially produced Kirlian Camera "Newton Milhomena Standart" for use in the practice of medicine in accordance with the "The Official Brasilian Standard of Kirliangraphy", based on the results of the statistics gathered in the course of 15 years, Kirlian image capture on color film. Author Milhomens Newton (Newton Milhomens).

1986 The first congress in Brazil dedicated to the Kirlian method.

1987 proved the high reliability of the Kirlian diagnostics of physiological state of the body. Work was carried out in the United States Organization for Space Research NASA (Apollo program Saturn).

1988, India established the first fully computerized registration Kirlianograms complex but based on the highly sensitive camera.

1989 SF novels created Kirlian Camera "AGRD" (gas-discharge device diagnostic).

1989 ET Protasiewicz (Tomsk) investigated the occurrence of cold plasma in the humid air.

1990 Gheorghe Hagi (Georje Hadjo) French researcher, has developed a Kirlian camera GH30.

1991 at the studio "Lennauchfilm" was filmed a popular science film "Living veils."

1991 VP Shabayev (Alma-Ata) created a Kirlian camera "Alma-Don".

1994 AP Boychenko (Krasnodar) has created a Kirlian camera "GRF-1."
1995 Korotkov KG He developed the first hardware-software complex "Crown-TV", which allows to capture the discharge of objects and process them on the computer numerical characteristics.

1995 Finland, Bioelectrography based International Union for the coordination and development of bioelectrography comprising Kirlian photography.

1995 Korotkov KG He developed the first software and hardware Crown-TV, which allows to capture the discharge of objects and process them on the computer numerical characteristics.

1998 Korotkov KG organizing company JSC «Kirlionics Technologies International».

1998 Canada, developed the device receiving color Kirlian photos on photo paper type «Polaroid». The dependence of the colors in the image of the state of the chakras of man. Author Kravesl Agnes (Agnes Krawesk).

1998 In February 1998, on the initiative of Dinskoy Museum in Krasnodar were held Kirlian readings dedicated to the 100th anniversary of Honored inventor RSFSR Semen Davidovich Kirlian and released a collection of reports and articles.

1999 Korotkov KG He defended his doctoral thesis on gas discharge discharge.

1999 Russia, GDV entered in the register of medical devices and allowed its practical application in medical practice.

2000 Korotkov KG At the International Congress in Brazil he was elected President of the International Union of Medical and Applied bioelectrography.

2000 N. Ignatiev (Novosibirsk) has created a Kirlian camera "KIRBEG-01."

2001 Zaitsev SV Discharge image in patients with asthma and their changes under the influence of medication treatments and acupuncture. Dissertation of the candidate of Medical Sciences, St Petersburg. 2001 93c.

2002 EV Kryzhanovskii it was proposed to use the dynamic GDV-graphy, explore dynamic processes crown discharge visualization of objects.

2009 Firm "Biointek" (St. Petersburg) produced the instrument for recording dynamic GDV "crowscopy."

2010 Company Fullspectrum (UK) created a Kirlian camera JAK 500.

The main stages of development of devices for registration categories:

- 1777-Georg Lichtenberg-Christoffel (Germany) Check-discharge on the dielectric surface.
- 1851-Alexandre-Edmond Bekkerel- (France) Check-discharge on the plate.
- 1982-Narkevitch-Yodko- (Russia) Registering the discharge of the human hand on a photographic plate.
- 1939-Semyon Kirlian Davidovich- (Russia) Check-discharge hands through the transparent electrode.
- 1971-Edmund Scientific Co., Electrophotography Lab. (USA) -serial production of inexpensive Kirlian camera to record the discharge on photo paper.
- 1988-Ramesh Singh Chouhan- (India) Fully computerized system for registration of luminescence.
- 1996-Konstantin Korotkov Georgievich- (Russia) -serial issue computerized registration system based camcorder discharge "Crown-TV."

1.2 Conference on Kirlian in Russia.

In 1893 the St. Petersburg State University organized a conference on the electrophysiology and electrocardiography.

Fig. 1-2-1. Proceedings of the conference.

2007 International Internet Conference on Kirlian effect. Internet conference to be held by video link www.skype.com. She led Sofia Blanc.
Conference in St. Petersburg.

International Scientific Congress "Science. Information. Consciousness".

Conference Kirlian abroad.

1973-2-nd Western Hemisphere Conference on Kirlian Photography, Acupuncture, and the Human Aura. 2d, New York, 1973. 244 pages. (2nd Conference on Kirlian photography. New York.) The conference had more than 1,000 participants.

1974-first international exhibition of Kirlian high frequency photopsychography, organized and presented by the Eikon Gallery. Monterey. California. USA. Parker Don H.

1977-1-I
1978-2-I

1986-I Brazilian Congress on Kirliangraphy. Curitiba. Brazil. 1986. The conference was attended by over 250 people. The conference discussed the standard "Newton Milhomens Standard" as the Brazilian Official Standard of Kirliangraphy.
1999-IV Brazilian Congress of Kirliangraphy. Curitiba. Brazil. 10-11 April 1999. The conference was attended by over 200 people.

WKRA - Western Kirlian Research Association

1983-Maria Syldona was executive director WKRA, organizer of the first conference.
1.3 IKRA-The International Kirlian Research Association.

1974 scientists from different countries came together in an international association for the study of Kirlian effect (The International Kirlian Research Association, IKRA, IKRA) (Drexel University). The organization was formed in December 1974 at a seminar in the Community Hospital in Brooklyn, NY for the purpose of standardization and assistance at all stages of research into the Kirlian phenomenon. Dr. Benjamin Shafiroff, New York College of Medicine, USA President of the Association IKRA.

The first members of the association are:
- I. Dumitrecescu M.D. (Bucharest, Romania), +
- D. Faust (Philadelphia, Pennsylvania), +
- A. Hulstrunk, M.S. (Rexford, New York),
- L. Konikiewicz M.A.R.B.P. (Harrisburg, Pennsylvania), +
- L. Kuriger (Phoenix, Arizona),
- E. Lantz (Miami, Florida),
- K. Libraty (Brooklyn, New York),
- T. Moss (Los Angeles, California), +
- K. Schoss (New York, New York),
- T. Upton (Monrovia, California). +

http://carrollscottage.com/Kirlian/
Published the journal Acta Electrophotographica (Official Journal of International Kirlian Research Association, published in Romania)
IKRA Newsletter, (1976)

Fig. 1-3-1. Publications IKRA.

1975-18 may, Ney York. The first workshop, 400 participants.
1975-Conference on Kirlian Phenomena. Sponsors of the Congress Department of Physics and Atmosperic Science
1977-1-I
1978-2-I

Omura Yoshiaki International Kirlian Research Association (IKRA),
1975-Chairman of International Standards Committee, May.
1980-Vice president of IKRA.

1983-Steiner L.R., Bio-energy photography. IKRA Communication. 7.8 / 1983

1.4 IUMAB (International Union of Medical & Applied Bioelectrography).

1978 organization in the United States and the United Kingdom of the International Union of Medical and Applied Bioelectrography (International Union of Medical & Applied Bioelectrography IUMAB). Douglas Dean (USA) and Bernard Grad (UK). The union was formed for the following tasks:

-utverzhdenie value and scientific status bioelectrography by thorough research;

-Consolidate people involved in various aspects of research bioelektrograficheskikh to exchange experience and results;

-development bioelektrograficheskikh research in rigorous scientific framework, especially when it concerns the health aspects;

The organization of the research center and the publication of the magazine.

1986 Education The International Union for Medical and Applied Bioelectrography (IUMAB) in Pondicherry (India) Ramesh Singh Chouhan, Rajaram Pagadala, Douglas Dean and Bernard Grad.
1986 The first congress in Brazil dedicated to the Kirlian method.

1987 reorganization in 1987. the International Union of Medical and Applied BioElektronografii (IUMAB), regularly hosts international conferences and symposia on "Kirlian".
1987-1 th Conference
1988 1st Conference IUMAB, India.
Fig. 1-4-1. The emblem of the organization.

Douglas Dean (Dean Douglas) (USA), president of the society.
Vice Presidents of the Company:
- Matti Olila (Finland)
- Ramesh Chschuhan (Ramesh Chouhan) (India)
- Konstantin Korotkov (Russia)

1996 Korotkov KG the Vice-President of the International Union of Medical and Applied Bioelectrography (IUMAB).

http: //kirlian techno.narod.ru/KirlianTechno/pages/KN.htm

1996 at a meeting of the Presidium of IUMAV in Denmark in 1996, the main problems of GDV are as follows:
-lack of systematic clinical trials with a set of statistical data on the various states of the body, types of pathologies, disorders of life, etc ;
-Small amount of theoretical studies the interaction of the gas discharge and biological objects;
-complexity playback published data due to lack of methodological standards and exemplary means;
-no basis for statistical comparison of data related to the complexity of the quantitative image processing;
-no standardization of research methods;
-neudobstvo techniques for practical use due to the use of the photographic process and the darkened room.
1997-15-16 March IUMAV workshop at the University of Aarhus, Denmark, was created the European Group for Research and Standardization (European Research & Standardization Group of the IUMAB), part of which went Korotkov KG

Fourth Official Conference of the International Union of Scientific and Applied Bioelectrography

-1999 Conference in St. Petersburg,

Germany, Dr. Peter Mandel (Dr. Peter Mandel),
Brazil Professor Newton Milhomens (Prof. Newton Milhomens),
Slovenia Professor Igor Kononenko (Prof. Igor Kononenko),
Finland Matti Ollila Doctor (Dr. Matti Ollila),
England, Dr. Rosemary Steele (Dra. Rosemary Steel).
Russia Dr. Konstantin Korotkov, (Dr. Konstantin Korotkov),
Sweden Professor Lars-Erik Unestahl (Prof Lars-Eric Unestahl),

At the international congress in Brazil Korotkov KG elected president IUMAB 4 years, Newton Milhomens elected vice president IUMAB (Brazil).

2001-the V Congress of the International Union of Medical and Applied Bioelectrography (IUMAB) in Curitiba, Brasil.

Fig. 1-4-2. Editions IUMAB.

Officers of the International Union of Medical & Applied Bioelectrography (IUMAB)
(As of January 2003)
President
Konstantin Korotkov, Ph.D., Prof., St.Petersburg, Russia
Vice-President
Matti Ollila, M.Sc., D.Sc. (H.C.), Finland
Members of the Board
Marco Bischof, Germany (Berlin)
Benny Johanson, Ph.D., Sweden
Igor Kononenko, Ph.D., Prof, Slovenia
Stanley Krippner, Ph.D., Professor, USA
Peter Mandel, Germany
Newton Milhomens, Brazil
Rosemary Steel, England
Lars-Erick Unestahl, Ph.D., Prof., Sweden

International Congresses on Bioelectromagnetism, ICBEM.

http: /www.bem.fi/info.htm

http: /ieeexplore.ieee.org/xpl/mostRecentIssue.jsp? punumber = 5414
/blk.fe.uni-lj.si/icbem
2002-4th ICBEM, Montreal, Canada. 2-6. 6.2002.
2005-5th ICBEM, Minneapolis, USA. 12. 15.05.2005.
2009-7th ICBEM, Rome, Italy. 29-31. 5. 2009.

http://korrectnews.narod.ru
1.5 Kirlian Semyon Davidovich.

1898 Semyon Davidovich Kirlian was born February 20, 1898 in Ekaterinodar in a large middle-class family. He studied music and dreamed of becoming a pianist, but at the beginning of the First World War was sent to Tiflis in the Caucasus spare artillery battalion. At the end of 1917 and returned to Ekaterinodar entered electrician plumber on ledodelatelnuy plant. Thus began his working career related to electricity. He was repairing electrical equipment, worked in the publishing house "Petrel" in 1st city hospital.

In 1920 the town was renamed Ekaterinodar Krasnodar.

In 1939 Semyon Davidovich took repairman of electrical equipment to the city hospital, renovated in hospital physiotherapy apparatus for therapeutic massage, which used high-frequency current (apparatus for darsionvalization), he drew attention to the strange pink discharge between the cover glass electrode and the skin hands. SD Kirlian decided to try to fix the resulting image discharge in the high frequency current of an object.

I come to the aid of an old friend, SD Kirlian an electrical engineer and a passionate amateur photographer AG Zherebilov. "Maybe try to influence discharges on photographic emulsion, placing between the electrode and the skin of photographic film? But in the bluish discharge of hollow glass electrode will light. Then it was decided to replace the glass with metal, however, the ranks became painful." When the feeling of isolation from the Earth became smaller. Thus it was obtained the first images of the unique objects animate and inanimate nature using the "high-frequency currents."

Then, in collaboration with his wife Valentina Hrisanfovnoy began to improve, the original scientific experiments. Only carefully checked and experimentally proved on thousands of photographs the reality of the developed method Kirlians decided to formalize it legally: August 2, 1949 was notarized first picture obtained by experimenters. Then the method was declared and formalized patents.

At home, he constructed a device on a flat metal electrode strengthened negative film, which was necessary to cover the palm. Then, through the "sandwich" was passed a current of high frequency. Kirlian used for this purpose are not coil Ruhmkorff and safer modified their response, Tesla transformer.

The first object that was "photographed" thus became the coin. The inventor has connected thereto one electrode placed on top of the tape, covering her second electrode included a high-frequency current. Having made an imprint S.D.Kirlian saw a picture coins, which went along the edges of the sliding discharge.

When photographing Kirlian not use the camera. The object was placed between two metal plates, through which an electric current frequency of about 200 kHz. The palms and fingers photographed superimposed on a photosensitive surface of a charged metal plate.

He planned to use an insulating table and put a photographic plate wrapped in black paper, on the surface of the electrode. The second electrode is clamped in his hand, his finger on the plate, flip the switch, you're done! For insulation, he became feet on the rubber mat.

One of the discoveries of the Kirlian discharge is dependent on the psycho-physiological state of a person.

Looking through the eyepiece of the microscope adapted to observe the bits, you can see the enchanting flashes, sparks, lightning, distribute whimsical patterns. The device created by the transparent electrode was used. Finger is applied to the lower electrode side and observation was made on the upper side of the transparent electrode through a microscope.

The apparatus was on the table is not cumbersome, as improved microscope. On the stage is put a leaf of a plant included electricity, and the eyepiece there is a delightful picture! Conventional leaf turns into a brightly lit huge, highly organized and economically distributed city. And there are clearly visible all the objects: a bright light illuminated the road (main leaf veins) on them are narrower track. And all lit up! Between them, the various "communication" settlements. And different "objects" of different intensity lighting, dark spots. Each "object" on Kirlian photography can be seen and learn!

1939 SD. Kirlian took repairman of electrical equipment in 1st city hospital.
1939 The first experiments SD Kirlian daronvalization the machine for discharge to obtain images. Semyon Davidovich Kirlian in 1939 made his most important scientific discovery while working on the device repair d’Arsonval and drawing attention to the discharge of his fingers. The apparatus used in the initial experiments consisted of generator HDTV resonator coil interrupter. Generator HDTV turns dangerous for humans electric current to a safe. Such a generator has to work with a frequency of approximately 75-200kGts fluctuations pulse sharply damped. Each pulse should not carry much energy that it can not provide the body heat or irritating. Its duration 50-100msek.

Fig. 1-5-1. The spark generator.

Kirlian began to invent new methods and devices to achieve better images. From the contact photographing, he moved to seek opportunities to obtain images similar to television, that is, on the luminescent screen at a low vacuum. Then it creates a bit-optical electrode, a device in which one of the electrodes is water. Through this optically transparent electrode can be seen under high magnification discharge process occurring on the surface of the sheet or on human skin.

1949, the State Committee for Inventions and Discoveries they were granted a copyright certificate №106401 "Method of photographing objects in high frequency." The invention was immediately classified.

1950 Moscow comes scientist botanist for registration discharge of two leaves of the plant. One sheet torn from a healthy plant, and the second, with the patient. Although at first sight, both the sheet did not differ from each other, their differences in the images were clear. The disease is clearly manifested in the energy field, the plants before the onset of symptoms in the physical body.

1952 Semyon Davidovich made several visits to Moscow, where in closed meetings of the Presidium of the USSR Academy of Sciences report on the results of their research. Shortly after one of these trips Kirlians receive a letter from Academician Topchiev in which he recommends to write a monograph detailing the nature and basis of their method for obtaining an image by gas discharge. The inventors have enthusiastically set to work, and after eight months, by 20 November 1952, a manuscript titled "High-frequency discharges in the electric field of the capacitor: photographing high-frequency, high-frequency electron-ion optics" has been completed and submitted as a report to the Presidium of the Academy of Sciences USSR.

1957 Kirlian spouses are allowed to open the publication of their works. His work is partially published authors in the journal "Science and Applied photography and cinematography" entitled "Photography and visual observation by means of high-frequency currents." It was the first magazine, it is known the world about a new kind of photography. The publication caused a great response in the society and the scientific world, which has led to the need for the spouses Kirlian write in more detail about his research.
1958 SD Kirlian He traveled to Moscow and met with the chief engineer Soyuzminzdrava Kondratov GV
In the early 1960s, Lev Fyodorov of the USSR Ministry of Health, affected the prospects of using Kirlian photography in the medical diagnosis, allocated spouses Kirlian research funds. But soon after the death of Fedorov funding from Moscow began to wane, giving way to skepticism and criticism.
1960 Belov. The torches, illuminating the unknown. Literary Gazette. October 29, 1960. Article about Kirlian SD
1962 in the journal "The Soviet Union» 1962. №3. published an article about the work of Kirlian. The magazine published in 16 languages.
1964 came the brochure "In the world of wonderful bits of" publishing "Knowledge".
1965-20 of December. We come to the head. Chair of Plant Biochemistry Krasnodar Polytechnic Institute Professor. P.S.Erygin and Vice-Rector assistant professor of the same institute A.S.Polyakov. The purpose of their coming-acquainted with the possibilities and prospects of methods of photographing high-frequency currents. P.S.Erygin must see the breath of grains of rice, and A.S.Polyakovu-catching through the rose petals number (declining profits) essential oils.
1966 CHART take photographs for foreign publications APN.
1966 Semyon Davidovitch and Valentina Hrisanfovna become members of the Moscow Society of Naturalists.
1966 Blog Entry Kirlian on March 19, 1966: For 17 years, being the official correspondence between the ministries, committees, research institutions, the opening of a special laboratory for the development of our research methodology for obtaining images by means of high-frequency currents. And to this day, since 1949, the question of this lab is hanging in the air, no one can lead it, while in France (what we learned by chance) have developed a method and practically used in biology.
1966 in the Krasnodar Agricultural Institute (KNIISKH) was a laboratory for the study of the method of photographing using high-frequency currents. Head of the Laboratory was Kirlian SD
1971 In December 1971, after a serious illness passed away Valentin Hrisanfovna. Despite the irreparable loss and poor health, Semyon Davidovich continues the work of his life, trying to complete the study started.
1972 In a letter addressed to the participants of the first Western Conference kirlianskoy photos, Semyon Kirlian wrote: "The new research will be so essential that only future generations will be able to estimate their worth. Before us is a huge open world, even more, of infinite possibilities. ", 1974 Semyon Davidovich Kirlian was awarded the title "Honored Inventor of the RSFSR."
1976-1978 two years Semyon Davidovich manages a special laboratory in the Krasnodar branch of the CPP "Saturn" Institute current source (Kovno), where he directed further work on the study and application of his method. Laboratory staff were Belomestnykh Nina, Yevgeny Zyryanov Timofeevna Primachenko Nikolai Yakovlevich. Medical issues involved Beletskaya Nina. She took a huge amount of black and white Kirlian photos in hospital in different patients. In recent years, he was involved in the creation of the atlas Kirlian images for medicine.
In his later years S.D.Kirliana invited to work in the laboratory of Biophysics of the Krasnodar Reseach Institute of Agriculture.
1976 to the SD Kirlian We came to American journalists.
1976, the Italian association of scientists awarded S.Kirliana nominal gold plate for the great contribution in research and invited him to take part in the VIII International Congress on parapsychology, whose work is covered by the study "Kirlian". But Semyon Davidovich could not go to Italy (and also in Japan, Brazil and other countries, invited him).
1978-28 February 1978 SPC "Saturn" (a branch of the NGO "Quantum") organized by the All-Union conference dedicated to the 80th anniversary of S.D.Kirliana. Following the conference, a collection of reports was issued. The collection includes the work of researchers from Krasnodar, Moscow, Leningrad and Dnepropetrovsk.
Seventy recipients sent reprints of an article published in an academic journal; not less than thirty recipients sent spouses drawings, diagrams, explanatory notes, as well as advice given in absentia. Fifty-two scientists from Leningrad, Moscow, Saratov, Lviv, Chisinau and other cities, not content
with correspondence, visited Krasnodar to here on the spot, learn from the experiences of spouses Kirlian. In its archives there are letters from 130 cities around the world. 1978 after the death of seeds Davidovich April 4, 1978 left the receivers of his case. Some materials are stored in the National historical museum village Dinskoy Krasnodar region. The museum contains a unique, authentic documents about the life and activity of the Krasnodar inventor Semyon Davidovich Kirlian and Valentina Hrisanfovny, personal belongings, instruments made by scientists, diaries, letters, manuscripts, a library owned by the inventors, furniture, photographs, films, and other devices Materials of scientific and creative activity. Museum Director Lagoon Elena G. Korobov.

Fig. 1-5-4. Driving device.

Fig. 1-5-5. Monument at the grave S.D.i VH Kirlian at the Slavonic cemetery in Krasnodar.

1949 SD Kirlian A method of increasing the contrast of photographic images. Stated Patent 106421. September 1949. + Contrast enhancement is achieved by placing between the subject and the photographic material of fine fabrics, such as chiffon or gas. At the same time between the subject and the photographic emulsion is formed a space causes a vigorous flow of the discharge process and the strengthening of its action in the emulsion due to the guiding action of tissue cells and its dielectric properties.

1956 SD Kirlian Kirlian VH A device for monitoring the electric phenomena occurring on the surfaces of objects under the influence of high-frequency currents of the field. Patent 120609. 1959. To investigate + discharges enlarged transparent plate of the capacitor is fixed on the optical system.

1958 SD Kirlian Kirlian VH A device for monitoring the electric phenomena occurring on the surface of objects under the influence of high-frequency currents of the field. Patent 123260. 1959. +
1978 SD Kirlian Some of the physical and technical features of the development of equipment for the study of the Kirlian method.

2003 SD Kirlian Kirlian VH In a world of wonderful places. Krasnodar. 2003 198s.
2003 SD Kirlian Kirlian VH High-frequency discharges in the electric field of the capacitor: photographing high-frequency, high-frequency electron-ion optics. In a world of wonderful places. Ed. AP Boychenko. 2nd ed. Krasnodar. Education-South. 2003 200c.
Lototskaya Valentina (grandniece Kirlian VC (Lototskii).
2000 Fomicheva T. Effect Kipliana became a sensation in the scientific mipe, but few know how misery avtop ideas. Freestyle Kuban. 2000 May 19. p.2

Filming movies about research Kirlian SD
From 1961 to 1978 he photographed five educational films about the "Kirlian effect".
1971 They came to shoot a film about them from Kievnauchfilm.
1991 at the studio "Lennauchfilm" was filmed a popular science film "Living veils."
2002, the 65th anniversary of the Krasnodar Territory was filmed documentary "Semyon and Valentina Kirlian" Krasnodar TV studio "New Television of Kuban" made Natalia Brazhnikova. +
1.6 Konstantin G. Korotkov.

http://korotkov.org/konstantin-g-korotkov/
-Deputy Director of Science of St. Petersburg Research Institute of Physical Culture (NIIFK).
'Professor of computer science and biophysics at the St. Petersburg Federal University of Information Technologies, Mechanics and Optics, Faculty of Computer Technology and Management, Department of design and security of computer systems, head of the laboratory gas discharge visualization in St. Petersburg Gitmo (TU).
Vnesheconombank Deputy Director of the St. Petersburg Academy of Physical Culture.
-President Of the company CTI, Ltd. "Kirlionics Technologies International"
-OOO "Biotechprogress"
-President Of the International Union of Medical and Applied bioelectrography (IUMAB),
-konsultant Corporation Aveda Co. (USA),
Membered editorial board of "Journal of Alternative and Complementary Medicine", "Journal of Science healing results of the research."
More than 25 years engaged in the research of Kirlian effect. Author of 6 books. 200 articles. 15 patents. by the method of Korotkov in Russia are already protected by four technical thesis and six health care, three dissertations in America.

Fig. 1-6-1. Konstantin G. Korotkov.
http://ktispb.ru
http://korotkov.eu
http://korotkov.info
http://kirlian.ru
http://forum.gdvplanet.com
http://ww.bio-well.eu/ru/
http://www.bio-well-eu.com
http://gdvonline.ru
http://www.gdvsoftware.com
http://kirliantechno.narod.ru
http://grvek.narod.ru/index.htm
1969-1975 Training at the Leningrad Polytechnic Institute at the Department of Physical Electronics Radiophysics Faculty,
1975-1983-work at the Department of Physical Electronics LPI,
1979 Konstantin G. Korotkov Group (St. Petersburg), Vadim Polyakov B. (St. Petersburg), Stanislav Romanov Flippovich (Dnepropetrovsk).
1982 master's thesis on the scientific degree of candidate of physical and mathematical sciences,
1983-1989-work in research institutions,
1989-1995 Director of Biomedical Engineering Center,
1989 Complex equipment exhibited at the Leipzig Fair.
1992 Complex equipment exhibited at the fair in Zurich.
1995-2000-doctoral, senior researcher SPbGU,
In 1996 he developed the first software and hardware Crown-TV, which allows to capture the discharge of objects and process them numerical characteristics programmatically.
1996 Vice-President of the International Union of Medical and Applied bioelectrography (IUMAB),
1998 Organizes and becomes president of JSC "Kirlianics Technologies International",
2000 Professor of "Computer Systems" SPbGU,
2000 President of the International Union of Medical and Applied bioelectrography (elected at the International Congress in Brazil).

1989-1995, Korotkov KG Director of Biomedical Engineering Center,
Center for Energy and Information Technologies SPbITMO.
With instrument "Crown-current" and "Crown-TV" experiments were conducted state registration of changes in energy-AV Chumak at volitional change this state and the people who were influenced by it in different contexts.
The device "Corona current" is a device for high-frequency currents computer desk surface (by moving the dielectric) the discharge near the surface of the developing finger test. As demonstrated by a large series of experiments, the nature of these curves is very sensitive to changes in energy-(EI) state of the subject. At the same time this device produces conventional Kirlian photography. On the basis of the device "Corona current" implemented a distant sensor for detecting the impact of EI, the last big test cycle.

St. Petersburg Federal University of Information Technologies, Mechanics and Optics, Faculty of Computer Technology and Management (FKTiU)
Department of design and security of computer systems,
Gatchina Armenakovich Yuri, Head of design and safety of computer systems SPbITMO.
Korotkov KG head of the laboratory gas discharge visualization.

1980 Bankovsky NG, Korotkov KG The main features of the surface of the GDV under reduced pressure. L., 1980. 45c. Dep. VINITI №5288-80.

1995 AA Umzar VI Trofimov Korotkov KG The use of gas discharge visualization (Kirlian effect) during the EHF and Su-Jok therapy of patients with bronchial asthma. For the first time in medicine. 1995. №1. s.66-67.

2001-Alexandrova R et al. 2001. Energy-informational effects of medications and acupuncture for the bronchial asthma patients. Scientific Papers of St. Petersburg State Medical University. VIII, №1, p.73-78.
2003 Korotkov KG Krylov BA Korotkina SA Operation GDV Camera. Processing of measurement results in complex programs GDV electrography. Part 1 Hardware industry. Methodical instructions to lab.rab. SPbGUITEMO. 2003 32c

2010 Korotkov KG The energy of your home. 2010.

2013 Korotkov KG The energy of your thoughts. 2013.

Korotkina Svetlana, wife of the gene. Director of "Hemotest."
Anna K. Korotkov, daughter.
Cyril K. Korotkov, the Company «Korrect Technologies» (LLC "Correct").

Patents Korotkov KG

1985 AS. 1322900 USSR ionization detector. Korotkov KG (USSR) №3945460, stated. 19.08. 85.
1988 VA Galynkin GudakovaG.Z. Zhernovoi AI Korotkov KG (USSR) AS 1377813 USSR MKI G03B 41/00, method of determining the physiological state of a biological object. №3780663, stated. 06.08. 84, publ. 02.29.88, Bul. №8.
1990 GZ Gudakova Korotkov KG Evchuk VS Kukui LM Popov Yu (USSR) AS 1561066 USSR MKI G 03 G 17/00, apparatus for photographing a gas discharge liquid-phase objects in an electric field of high tension. №4423602, stated. 11/05/88, publ. 30.04.90, Bul. №16.
1989 Korotkov KG Pavlik VA Kudryavtsev VM (USSR). AS 1456047 USSR MKI A 01 D 33/08, method for separating potatoes from stones and soil clods. №4200324, stated. 02/24/87, publ. 7.2.89, Bull. №5.
1990 Gudakova GZ, Evchuk VS Korotkov KG, Kukui LM, Popov Yu, Sharapov AM A.s.1561066 USSR, MKI G03G 17/00. A device for photographing a gas discharge liquid-phase objects in an electric field of high tension. №4423602, stated. 11/05/88, publ. 30.04.90 .. Discovery. Inventions. 1990. №16.
1989 Korotkov KG Kozhevnikov ND (Center for Scientific and Technical Creativity "Quantum") device for registration of gas discharge discharge of biological objects. AS 1991. Patent 1664286. 4736898. + The apparatus comprises a discharge chamber, which is a dielectric plate provided with micro-channels in the zone of the object under study. The camera is positioned on the transparent plate to which is attached an electrode connected to a generator. Located coaxially with the fiber electrode connected to a voltmeter.
1996. A positive decision on the application by the Russian Federation 96,110,649 05.06. 96. The device of gas discharge visualization of the image. KG Korotkov, VA Minkin AI Strain.
1997 Korotkov KG Korotkina SA Lehtomaki L. (FI) The method for determining the energy-condition of a biological object. Patent No. 2141250. 1999. The method for determining the energy-condition of a biological object by capturing and comparing the structure of gas discharge discharge around the reference and the test object in an electromagnetic field, characterized in that the fixed structure of the gas discharge discharge around the reference and the test object is converted into a digital code, quantify these structures discharge, reflecting their two-dimensional geometric characteristics are determined for the reference and the test object corresponding points in a multidimensional space of these parameters and the distance between these points determine the deviation of the energy-state of the object by reference.

2001 Korotkov KG A method of diagnosing the state of the human body. Patent No. 2217047. 2003. The method comprises obtaining visual images structure streamer discharge fingers in an electromagnetic field at its contact with the electrode and the estimation of parameters of streamers. The visual of the invention is divided into sectors corresponding to different organs and systems. Determine the closed curves corresponding to the boundaries of zones of contact with the electrode fingers define the point of intersection of these lines with lines dividing the image structure of discharge streamers fingers into sectors, and these points form a single image of the contour of the silhouette of the body. Diagnosis of the state of the human body is carried out by estimating the parameters of the streamer discharge resulting single image.

2003 Korotkov KG A method for determining human anxiety. Patent No. 2234854. 2004. To determine the human anxiety excite gas discharge discharge around the study of the human skin by passing a pulse of electric current through this site through the polymer film without her. PF-measured total power pulses of electrical current flowing through the test section of the skin with a film, and PNF-total power pulses of electrical current flowing through the test section of the skin without the film. Thus, if the PF is different from RNF, ascertain the state of anxiety; If PF is characterized by RNF in the range up to 25%, the low state the level of anxiety in the range from 25% to 75% expressed ascertain anxiety, and if the PF RNF different from more than 75%, ascertain stress.

2005 Korotkov KG Korotkina SA Usobov RR Apparatus for determining the state of a biological object. Patent No. 2303391. 2007. Apparatus for determining the condition of the biological object, including electronic pulse generator, a transparent plate provided with an electrode formed in a layer coated thereon an optically transparent conductive material, a lens, an optoelectronic digitizer, a computer and the information presentation unit, wherein output of the generator connected to the electrode, and the first output of the computer is connected to the input information presentation unit, characterized in that is provided with one or more additional transparent plates with electrodes deposited thereon, one or more additional lenses and one or more additional optoelectronic digitizer wherein the amount of additional lenses or opto-digital converters corresponding to the number of additional transparent plates with electrodes deposited thereon, and further provided with a memory unit and a control unit and data communication with the electrodes of transparent plates are interconnected outputs opto-digital converters are respectively connected to first, second, n-пым inputs of the storage unit, the output of which is connected to a first input of the control and data exchange, the first output is connected to (n + 1) th input of the memory block, and its second output is connected to the input of the computer, the second output which is connected to the second input of the control unit and data exchange.

1.7 Books on Kirlian.

1.7.1 Books Korotkov KG.

Fig. 1-7-1. Book covers Korotkov KG in Russian.
2002 Korotkov KG Mysteries of the living discharge. 2002 160s.
2007 Korotkov KG The principles of analysis of GDV bioelectrography. 2007 288s. ++
2011 Korotkov KG Korotkov KG, the energy of our thoughts. As our thoughts influence the surrounding reality. 2011.
Fig. 1-7-2. Book covers Korotkov KG in English.

1.7.2 Russian books.

1899 Dr. Mes. Pogorelsky. Elektrofosfeny energografiya and as proof of the existence of polar physiological energy or the so-called animal magnetism in their significance for medicine and science. With 48 photographs and photo type 2 in the annex portraits and facsimiles of the author. St. Petersburg, Type. V.Demakova. The new lane. 7. 1899. 105c.

1907 V. Bitner In the mysterious region. Scientific excursion into the mysteries of human nature. St. Petersburg. 1907 318s.

1964 SD. Kirlian VH In a world of wonderful places. M. 3nanie. 1964. 40c. +

2003 Shadura MI Chichinadze GK Information and Biogolografiya body. 2003 48c. ++
2009 Tokarev AV Corona discharge and its application. 2009 138c. +
2014 Pesotskaya LA. Know yourself and be healthy (or the stars, and Kirlian effect). Dnepropetrovsk. 2014 112c. ++

Fig. 1-7-3. Book cover.
1.8 Literature on Kirlian.

-Cattaneo Alberto Eduardo. La Medicina Energética y La Foto Kirlian. (App.).

George Nava True. Can Kirlian Photography Detect Diseases?
-JG Marinho-Kirlian photography and evidence of energy trasmission from one person to another. PSI Comunication, 1976
-The Kirlian Effect and Medical Science. The Medical Science Gazette, Official Organ of the Ministry for Health Preservation of the USSR, Ministry of Medical Technology & Central Committee of the Organizations of Medical Specialists, No.64 (3575), 1976.
-Claudio Marciano, "Effetto Kirlian", Atti del VI Convegno Nazionale CICAP, p.110-112

-Vilner NS Spitsina EA A study of patients with bronchial asthma by gas discharge visualization. 6th International Congress on bioelectrography "Science. Information. Consciousness. " St. Petersburg. 2002. s18-22. The studies were conducted on the device "Corona TV".
-Reshetov B. Shine. Around the world. 2003. №5. s.10-16.
-Harkovsky A. The lab comes the magician. Technique-youth. 1969. №3. s.26-27. +
1.9 Patents.

By the early '90s in the USSR it was issued more than 50 copyright certificates on various inventions, based on the use of "Kirlian photography". Among them, a method of nondestructive testing, the method of registration high air pockets in the solid material, the method defectometry in a high electric field, a device for visualizing magnetic pattern on the object surface, etc.

17. A.s.787979 USSR. MKI G03N 27/84, G01R 33/12. An apparatus for imaging a magnetic pattern on an object surface by A.s.634185. VV Kozharina, EN Perepelkin, AG Dovgyallo. Discovery. Inventions. 1980. №46. s.211.
18. A.s.813280 USSR. The inverter voltage. AE Skachkov, IS Lavrov, KG Korotkov. №4567645, appl. 9.4.79.
31. A.s.1322900 USSR. Ionization detector. KG Korotkov. №3945460, stated. 19.08. 85.
33. A.s.1377813 USSR. A method of determining the physiological state of a biological object. VA Galynkin, GZ Gudakova, AI Millstones KG Korotkov. №3780663, stated. 06.08. 84, publ. 02.29.88 .. Discovery. Inventions. 1988, №9.
36. A.s.1561066 USSR. MKI G03G 17/00. A device for photographing a gas discharge liquid-phase objects in an electric field of high tension. GZ Gudakova, VS Evchuk, KG Korotkov, LM Kukui, Y. Popov, AM Sharapov. №4423602, stated. 11/05/88, publ. 30.04.90 .. Discovery. Inventions. 1990, №16. 3.
37. A.s.1664286 USSR. MKI A61B 5/16. The device for registration of gas discharge discharge of biological objects. KG Korotkov, ND Kozhevnikov. №4736898, stated. 11.07.89.
42. A positive decision on the application by the Russian Federation 96,110,649 05.06. 96. The device of gas discharge visualization of the image. KG Korotkov, VA Minkin AI Strain.

--

Foreign patents.

1975-Elektronografische Vorrichtung zur Untersuchung des menschlichen Organismus. OS 2641144 Erfinder: Dr. med. Ioan Florin Dumitrescu, Bukarest (Unionspriorität 23,09,75 Rumänien 83440).
1975-Verfahren zur elektronographischen Abtastung lebender Organismen. OS 2618424 Erfinder: Ioan Florin Dumitrescu (Unionspriorität 05.05.75 Rumänien 82140 & 12,05,75 Rumänien 82222).

1.10 related fields and promising areas of research.

Related areas:

- fizika, the study of the physical properties of corona discharge,
- biofizika, the study of the electrical properties of the skin and the body,
- elektrobioluminesentsentsiya,
- ezoterika registration biofield,
- Photos getting photos contact method,
- Formation images on photo paper in the electric field.

- method Kirlian,
- coronene (surface, sliding) discharge are points of acupuncture meridians,
- biopole,
- neelektromagnitnoe emission rights.

Promising areas of research:

- dynamical Kirlian photography, recording and analysis of the dynamics of the process,
- monoimpulsnaya Kirlian photography, recording subtle effects and fast processes,
- rezonansnaya Kirlian photography, the determination of resonant frequencies for the registration of the various phenomena,
- distantnaya registration (surface Kirlian photography), registration with an air gap, Check-through opaque film for analysis nonelectromagnetic radiation
- development of new designs of Kirlian cameras.

Complete registration discharge different methods:

- Contact registration (standard method)
- distantnaya registration, registration with an air gap, through a fine mesh cloth
- Use of different filters, the spectral registration, registration in different spectral ranges, Dynamical, register changes in the discharge time,
- monoimpulsnaya, lighting-driving single pulse,
- with different polarity to register separately with the discharge of positive and negative pulses, c accumulation, registration discharge with different time savings, excitation with different pulse repetition frequency,
- Registering with no single value of the pulse amplitude, and at different values of voltage,

Methods for increasing the intensity of the discharge:
Phosphor 1. Using a fluorescent coating on the transparent electrode will increase the emission by converting invisible ultraviolet radiation into visible radiation,
2 Reducing the thickness of the insulating dielectric. Reducing the thickness of the transparent electrode would allow for the same magnitude of the applied voltage to obtain a higher voltage drop, and hence more intense radiation,
3 pulses with a sharp edge. Generation of pulses with a steep front will enhance the discharge.
4 reduced pressure. Register at reduced pressure will strengthen discharge. Under reduced pressure, the electrons have a large mean free path and gain more energy to excite the molecules. This causes an increase in luminescence. To create a sufficiently low pressure in the recording chamber to make an isolated space. To do this, insert a finger into the hole with the rubber seal (rubber washer with small hole), and vacuum is created using a simple pump.

1 Modification of existing GDV cameras:
- realization distant method of recording through the use of fine filter fabric mesh (0.2 mm thick) (optional, kaak one of the operating modes)
- GLUING pad on the thin phosphor layer for converting UV radiation into visible radiation,

2 Create a new type of GDV cameras operating at low voltage. A discharge cell is a thin (0.2 mm thick) film attached to the frame. Top thin film salted water as an electrode. Paley is applied from below. Monitoring and recording of the discharge is produced above. Due to the thin dielectric layer can discharge at low voltage.

Fig. 1-10-1. The design of low voltage Kirlian camera. 1 mounting frame. 2 thin transparent film, 3-water film, 4-in digital camera, 5-finger 6-mount battery positive, 7 contact the negative pole of the battery.