Express-evaluation of the psycho-physiological condition of the Paralympic athletes

Alexander, Drozdovski, PhD*; Irina, Gromova, Head Coach of the Skiing and Biathlon Paralympic Team of Russia**; Konstantin, Korotkov, PhD, Professor*

Oleg Shelkov , PhD, Professor*, Ошибка! Источник ссылки не найден., MS***

*Saint Petersburg Federal Research Institute of Physical Culture and Sport; Ligovski 56E, St. Petersburg, 191040, Russia. ** Paralympic Team of Russia, Turgenevskaja Square 2, Moscow, 10100, Russia. ***Georgetown University; Washington, DC, USA

Corresponding Author: Korotkov Konstantin, PhD, Professor , e-mail: korotkov2000@gmail.com, tel. +79219368394. fax+78126004116. Post address: NIIFK Ligovski 56E, St. Petersburg, 191040, Russia.

Short Title: Express-evaluation of the Paralympic athletes

35888
Abstract

Objective: Evaluation of elite athletes’ psycho-physiological condition at various stages of preparation and in international competition.

Design: Athletes were tested during training and participation in international competition using methods of Galvanic Skin Response (GSR) and Gas Discharge Visualization (GDV).

Setting: Saint Petersburg Federal Research Institute of Physical Culture and Sport, Russia; Paralympic athletic training camp, Norway.

Participants: 18 athletes from Russia’s Skiing and Biathlon Paralympic Team. All athletes had some level of damage to their musculoskeletal system.

Main Outcome Measures: Stress Level (SL), Energy Potential (EP), and Psycho-Emotional Tension (PET).

Results: It was found that the higher the level of EP achieved by the athlete in the training period, the lower the SL in the competition time. The SL of an athlete recorded in the training period significantly correlates with the SL both before and at the time of competition. The PET and SL before the World Cup was negatively correlated to the results of skiing competitions.

Conclusions: Evaluation of PET, EP and SL through GSR and GDV offers a fast, highly precise, non-invasive method to assess an athlete’s level of readiness during both training and at the time of competition.

Key words: Paralympic sport; express-analysis; Galvanic Skin Response (GSR); Gas Discharge Visualization (GDV).

Introduction

The challenge of express-evaluation of the psycho-physiological condition of athletes for timely correction of the training process is common in all sports. This is particularly important for highly competitive athletes in which a
significant amount of money and resources are being invested into their training processes. Currently, such evaluations are made both through subjective and objective measures. With each type of measurement being beneficial in its own way, and each type of measurement having its respective drawbacks. Subjective tools are often in the form of questionnaires for athletes and those working with the athletes. Objective tools include functional lung, heart rate variability and electroencephalogram tests (eeg).

While the information obtained from subjective tools does have its place, it faces a problem inherent to non-objective metrics; subjectivity. As such, the information provided can be skewed by inaccurate perceptions on the part of the reporter. For example, a coach may choose to focus on a particular area with an athlete during practice. If the athlete improves in this area as a result of the coach’s attention, the coach may believe the athlete ready for competition and report such on a questionnaire. However, the coach’s perception does not take into account that this same athlete may be dealing with significant mental stress in their home life, and has serious doubts about their ability to perform certain other tasks on the athletic field. In short, subjective metrics can only report what they see or experience directly. What is seen and experienced directly is heavily influenced by perception. If the reporter’s perception is in some way skewed, what is seen will also be skewed and thus reported.

Objective metrics on the other hand are less influenced by perception, yet still face a different hurdle with regards to training; logistics. One logistical limitation is that many devices used for these types of measurements are large, cumbersome and not easily transportable. Another such limitation is the processing time necessary for feedback. If the results are going to be implemented in some way in order to enhance training quickly, they must be obtained quickly. This should be done with as little effort as possible on the parts of the athlete and coaching staff. An athlete’s daily routine is often tightly scheduled, and leaves little room for time-intensive measurements. This is
especially true during competition periods. A final limitation is the often invasive nature of many currently available tests. For example, energy assessments obtained from infrequently having one’s blood drawn to measure various levels of key metabolites may be uncomfortable yet understandable to an athlete. However, daily blood withdrawals to measure those same parameters would no doubt be less palatable to that same competitor. It is for these reasons portable, rapid, non-invasive evaluation devices are desirable.\(^6\)

The goals of this study were 1) to test the ability of different instruments to provide rapid-evaluation of athletes’ levels of preparedness in training and competition, and 2) to identify the most sensitive parameters for assessing athletic preparedness. Previously, similar Russian studies have looked at a host of outcomes in order to determine athletic preparedness.\(^5-7\) These studies have been very important in laying the ground-work for this our current research. It is from these works that the authors believe the outcome measures of SL, EP, and PET may be the most informative parameters to assess athletic preparedness. It is our belief that this work is the first to examine sensitivity of exclusively these three parameters for this purpose.

Methods

The following methods and corresponding hand-held devices for athletes’ express-analysis were used in the study:

1) Evaluation of the psycho-emotional tension (PET) by measuring Galvanic Skin Response with “Mirage” device (“MEDPASS” Co, St. Petersburg, Russia); measuring electrodes were fixed on the pads of the index and ring fingers.\(^8\)

2) Evaluation of energy potential (EP) and stress level (SL) by Gas Discharge Visualization technique with “GDV-Sport” device
Measurements were taken from all 10 fingers.

Energy Potential (EP) is a measure of psycho-physiological condition of an athlete; it is calculated as a percentage ranging from 0 to 100%. EP = 100% is correlated with high level of competitive readiness and high energy reserve.

Stress Level (SL) is characteristic of the level of anxiety and stress, measured on a scale from 0 to 10. SL = 10 is correlated with high anxiety level and poor competitive readiness. Interpretation criteria are given in Table 1.

GDV Technology is based on the well-known Kirlian effect: when an object is placed on a glass plate and stimulated with current, a visible glow occurs, the gas discharge. With gaseous discharge visualization (GDV) bioelectrography cameras, the Kirlian effect is quantifiable and reproducible for scientific research purposes. Images captured of all ten fingers on each human subject provide detailed information on the person’s psycho-somatic and physiological state. The GDV camera systems and their accompanying software are being used in medicine and psychology. Through investigating the fluorescent fingertip images, which dynamically change with emotional and health states, one can identify areas of congestion or health in the whole system. The mild electrical stimulation initiated by the GDV creates a neurovascular reaction that registers on the skin. The characteristics of this reaction are influenced by the nervous-humoral status of all organs and systems. Images of these reactions are digitally captured and analyzed. In addition, for most healthy people GDV readings vary less than 10% over time, indicating a high level of precision in this technique. It is interesting to note that using GDV technology over the course of several years to study Russian paralympic teams, no significant differences between paralympic athletes and healthy population were found. At the same time analysis of data for handicapped individuals in Russia with the same type of problems indicated much worse states of their
psycho-physiological condition. This suggests that athletic training may play a vital role in maintaining the body’s energy level along with other key homeostatic parameters. For years GDV technology has been accepted by the Russian Ministry of Sport as one of several techniques used to rapidly evaluate an athletes’ psycho-physiological state.17

Athletes were measured every day in the morning before breakfast. Throughout this study 204 measurements were taken in the training camp and 189 measurements were taken before and during the process of the World Cup competition.

Participants

This study was conducted in an athletic research facility at Saint Petersburg Federal Research Institute of Physical Culture and Sport, Russia as well as at an athletic training camp in Norway from November 16 to December 18, 2011. During this time athletes were in the preparation process for the upcoming World Cup competition. A total of 18 athletes from Russia’s Skiing and Biathlon Paralympic Team volunteered to participate in this study. The athletes included 4 women and 14 men; 9 athletes of top level, age 32.5+/- 8, (LW5/7, LW6, LW8, LW10, LW12 in accordance with International Paralympic Committee classification), 6 athletes of middle level, age 24+/- 5 (LW2, LW12) and 3 preparatory level, 17 years old (LW8). All athletes participated in the study voluntary and with great interest; ethical considerations were taken into account. At the World Cup 2011, participants in this study earned: 6 medals in biathlon (3 gold, 1 silver and 2 bronze); 9 medals in skiing (5 gold and 4 silver) at the World Cup.

Statistical Analysis

Statistical analyses were carried out using the programs GDV Scientific LabartoryTM and StatisticaTM with one-way analysis of variance modeling
(ANOVA). This modeling was selected as the data adhered to each of the necessary assumptions for its use (independence of observations, normal distribution of dependent variables and homogeneity of variance across groups). Using the R-values derived from the ANOVA, correlations between the stated variables were determined to be either strong (R>.75 p<0.05), moderate (.49<R<.75 p<0.05), or weak (R<.49 p<0.05). For determining negative correlations, the same absolute values were used. This provided the statistical basis for assessment of our outcome measures.

Results

Figure 1 presents the averaged indexes of psycho-emotional tension (PET), Energy Potential (EP) and Stress Level (SL) for all participants. Figure 2 presents the same individual data for each participant. Table 1 presents interpretation criteria for EP and SL. Tables 2-5 present correlations between the aforementioned indexes and athletic performance.

Table 2 compared PET and EP at various stages of training and competition. Here, a strong correlation (R=0.953, p<0.001), was observed between the EP at the World Cup and the EP at the training camp. Moderate correlations were observed between EP before the World Cup and EP at the training camp (R= 0.674 p<0.01), as well as between EP at the World Cup and EP before the WC (R= 0.728 p<0.01). All other variables considered in Table 2 were only weakly correlated.

Table 3 compared PET and SL at various stages of training and competition. Here, moderate correlations were observed between SL and PET at training camp (R= 0.498 p<0.05), SL at the World Cup and PET at the training camp (R= 0.491 p<0.01), SL’s at the World Cup and training camps (R= 0.688 p<0.01), SL before the World Cup and SL at the World Cup (R= 0.554 p<0.05) and SL before the World Cup and SL at the training camp (R= 0.541 p<0.05). All other variables considered in Table 3 were only weakly correlated.
Table 4 compared EP and SL at various stages of training and competition. Here, moderate negative correlations were observed between SL and EP before the World Cup ($R = -0.620 \ p < 0.01$), SL at the World Cup and EP at the training camp ($R = -0.622 \ p < 0.01$), SL at the World Cup and EP before the World Cup ($R = -0.495 \ p < 0.05$), SL and EP at the World Cup and EP ($R = -0.699 \ p < 0.01$). All other variables considered in Table 4 were only weakly negatively correlated.

Table 5 compared the results from skiing and the biathlon against SL and PET at various stages of training and competition. In the biathlon, there was a moderate negative correlation in between PET before the World Cup and sprints run on 10.12.11, PET before the World Cup and long distance races run on 13.12.11, as well as PET before the World Cup and total results. In skiing there was a moderate negative correlation between SL at the training camp and long distance races on 15.12.11 ($R = -0.622 \ p < 0.05$), SL at the training camp and sprints on 17.12.11 ($R = -0.713 \ p < 0.01$), and SL at the training camp and total results ($R = -0.707 \ p < 0.05$). There was a moderate negative correlation observed between SL before the WC and sprints on 17.12.11 ($R = -0.590 \ p < 0.05$). There was also a moderate negative correlation between PET before the World Cup and and long distance races on 15.12.11 ($R = -0.574 \ p < 0.05$), PET before the World Cup and sprints on 17.12.11 ($-0.540 \ p < 0.05$), PET before the World Cup and middle distance on 18.12.11 ($R = -0.567 \ p < 0.05$), and PET before the World Cup and total results ($R = -0.707 \ p < 0.01$). All other variables considered in Table 5 were only weakly negatively correlated.

Finally, numerous statistical analyses were completed with each of the study’s outcome measures at various stages of training and competition. The outcome measures were also analyzed against the results of each competition. Due to the large number of results that could potentially be reported, the authors elected to fix the absolute value of 0.200 as the minimum R-value necessary for inclusion into the tables provided in this work.
Discussion

Among all outcome measures examined, the strongest correlation was observed between the EP at the World Cup and the EP at the training camp (R=0.953 p<0.001), (Table 2). The strength of this correlation suggests that a high EP in training camp leads to a high EP during the actual competition. Data in Table 2 shows at least moderate correlations for EP at all other times measured. This also suggests that EP is a relatively static metric for assessing athletic readiness.

Currently, the exact mechanism detailing how a high EP leads to athletic readiness is unclear. However, a theoretical model proposed by the authors postulates that EP may act like a psycho-physiological reservoir for an athlete. The larger the reservoir the more the psycho-physiological resources an individual has access to when energetic resources are demanded, as is the case during athletic competition. If the reservoir is large, then many small, or even few large demands placed upon it will not cause any major depletion. However, if a person begins training with a small energetic reservoir, even tiny demands may prove unbearable and lead to a rapid depletion of EP. For this reason, the hypothesized relative static nature of EP underscores the importance of achieving a high EP during training camp. Once an athlete has their particular EP established they have in essence set their homeostatic EP level. It should be noted that this EP level exhibits relative homeostasis and while this can fluctuate, it generally maintains within a given range for a period of time once it has been set18. The correlation data in Table 2 along with a visual inspection of Figure 2 lend supports this hypothesis.

Another key factor that may lead to the depletion of an individual’s energetic reservoir is having inadequate rest and time for replenishment of their reservoir. In a recent study looking at necessary rest intervals during athletic training, Artioli et. al found that repeatedly exposing the body to the rigors of
training without adequate rest, leads to steady erosion of physical and mental status. This erosion may ultimately lead to breakdown of the system.

Another important aspect of EP is its relationship to stress. In all correlations analyzed, EP was negatively correlated to SL (Table 4). This was most pronounced for SL at the World Cup. These results suggest that a high EP may serve a protective function against high stress levels. A low-level stress response is the body’s normal physiological answer when it is challenged in some way. This adaptation is not only beneficial, but also necessary for the maintenance of health and wellness. When the stress response is disproportionate to the stressor, or the stress response is prolonged in some way, other downstream negative effects can take place. A high EP seems to attenuate the stress response in order to keep SL low and within acceptable levels for health and wellness. However, if an individual has a high SL in conjunction with a low EP, not only is their athletic preparedness compromised, they may actually be in need of medical or psychological intervention. In training camp, athletes exhibiting low EP’s and high SL’s had consultations with professional sports psychologists per study protocol.

A second key observation regarding SL is that it exhibits its own degree of homeostasis. Table 3 shows that the SL of an athlete recorded in the training period significantly correlates with the SL both before and at the time of competition. Therefore, the SL’s a person records during the training period, will most likely be similar SL’s that same person records at different times throughout the training process. Although SL and EP both tend towards homeostasis, it is the belief of the authors that EP serves as the baseline psychophysiological marker that resists changes in SL, and not the other way around. This is based on the assumption that as athletes trained and competed in different circumstances (training camp, before WC, at WC), their stressors changed as well. If SL were unregulated by some other mechanism, changes in stressors would directly register as changes in SL. It was assumed that as time
approached the actual World Cup competition the stressor associated with competing would increase. However, SL actually decreases as an athlete moved from training camp, to before World Cup, and at the World Cup (Figure 1). Figure 1 shows that athletes with the greatest EP consistently demonstrated the lowest SL in each the various settings. Similar to SL, PET was showed a consistent, inverse relationship to other positive outcomes. Table 5 shows multiple negative correlations.

Conclusions:

A direct measurement of Energy Potential and Stress Level in the fast, non-invasive manner used for this study is a rather new approach developed in recent years in Russia. It has been tested for several years with teams at different athletic levels and sport types. The equipment and procedures have demonstrated high efficiency and reliability. The measuring process takes 1-2 minutes, and can be done practically anywhere. The instruments used may be run either from a power outlet or from a battery. The parameters explored for this study SL, PET, and EP are very important in understanding athletes’ levels of preparation for competitions. This paper is the first attempt to use these specific parameters for the assessment of athletic preparedness for the clinical sport medical community.

The level of Energy Potential of an athlete established in the training period directly influences the level of Energy Potential observed throughout training and competition. The Stress Level of an athlete recorded in the training period significantly correlates with the athlete’s Stress Level both before and at the time of competition. The higher the level of Energy Potential achieved by the athlete in the training period, the lower the Stress Level in the competition time, which may contribute to the competition efficiency. The higher the Stress Level and Psycho-Emotional Tension in the training period, the lower the probability of high competition results.
Hand-held computer complexes “Mirage” and “GDV Sport” used in this study allow for the express-analysis of psycho-physiological conditions of athletes with high precision at all phases of competition. Calculated parameters help to carry out corrective actions directed to optimization of the athletes’ condition in the biofeedback regime.

While the ability to use GDV technology in this capacity provided great benefit, both the technology and the current study design are not without their limitations. In medicine GDV has been primarily used as an adjunct tool for evaluation that offers healthcare providers more insight into a patient’s condition. Despite the fact that there is a great deal of potential yet to be uncovered from this technology, it’s principal use has not been as a stand-alone diagnostic procedure. With regards to future studies, in order to get a more complete picture of an athlete’s psycho-physiological landscape, the use of GDV in conjunction with additional metrics may be of benefit. Another way in which further research may offer more understanding would be in varying the types of competitions in which athletes compete. Though there is nothing to suggest that biathlon and skiing are in any way poor arenas to test the desired outcome measures, including different types of high-level athletic competitions would provide a greater volume of information from which to draw conclusions.

As this was an observational, pilot study, another point of concern was the sample size. While the authors feel confident in the reliability of the devices used and the reproducibility of the data collected, the small participant number makes it difficult to draw firm conclusions from this data. Future studies may offer additional insight by increasing participant population to ensure proper powering, adding an experimental intervention, and including self-reported participant questionnaires as well as questionnaires for trainers and coaches on their perceptions of each athlete with regard to the selected outcome measures to compare against GDV/GSR results. Finally, further research may also focus on elucidating the mechanism for the setting of Energy Potential. As it is believed
to be a significant importance, determining how it is established and thus how it may be increased is of great interest.

References:

Averaged on the group parameters of athletes measured at the different moments: in the training camp; before the World Cup; at the moment of competitions.
Fig. 2. Energy Potential and Stress Level for individual athletes measured at the different moments: in the training camp; before the competition; at the moment of competitions.

Tables

Table 1. Interpretation criteria for Energy Potential (EP) and Stress Level (SL) indexes

<table>
<thead>
<tr>
<th>EP</th>
<th>SL</th>
<th>SL</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%-80%</td>
<td>High level of psycho-physiological condition, low emotional tension</td>
<td>High level of psycho-physiological condition, moderate emotional tension</td>
<td>High level of psycho-physiological condition, high emotional tension</td>
</tr>
<tr>
<td>80%-60%</td>
<td>Moderate level of psycho-physiological condition, low emotional tension</td>
<td>Moderate level of psycho-physiological condition, moderate emotional tension</td>
<td>High level of psycho-physiological condition, moderate emotional tension</td>
</tr>
<tr>
<td>60%-40%</td>
<td>Affordable level of psycho-physiological condition, low emotional tension</td>
<td>Affordable level of psycho-physiological condition, moderate emotional tension</td>
<td>Affordable level of psycho-physiological condition, low emotional tension, moderate emotional tension, risk of traumas; overtraining.</td>
</tr>
<tr>
<td>40%-0%</td>
<td>Low level of psycho-physiological condition, low emotional tension</td>
<td>Low level of psycho-physiological condition, moderate emotional tension</td>
<td>Energy and emotional depletion; high level of stress; risk of traumas; overtraining. Detailed medical analysis is needed.</td>
</tr>
</tbody>
</table>
Table 2. Correlations between Psycho-Emotional Tension (PET) and Energy Potential (EP) before and in the process of the World Cup (WC) competitions.

<table>
<thead>
<tr>
<th>Indexes</th>
<th>PET at the training camp</th>
<th>PET before the WC</th>
<th>EP at the training camp</th>
<th>EP before the WC</th>
<th>EP at the WC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET at the training camp</td>
<td>X</td>
<td>0.377</td>
<td>0.024</td>
<td>0.307</td>
<td>0.013</td>
</tr>
<tr>
<td>PET before the WC</td>
<td>X</td>
<td>-0.291</td>
<td>-0.243</td>
<td>-0.366</td>
<td></td>
</tr>
<tr>
<td>EP at the training camp</td>
<td>X</td>
<td></td>
<td>0.674**</td>
<td>0.953***</td>
<td></td>
</tr>
<tr>
<td>EP before the WC</td>
<td>X</td>
<td></td>
<td></td>
<td>0.728**</td>
<td></td>
</tr>
<tr>
<td>EP at the WC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

* - p<0.05; ** - p<0.01; *** - p<0.001.

Table 3. Correlations between Psycho-Emotional Tension (PET) and Stress Level (SL) before and in the process of the World Cup (WC) competitions.

<table>
<thead>
<tr>
<th>Indexes</th>
<th>PET at the training camp</th>
<th>PET before the WC</th>
<th>SL at the training camp</th>
<th>SL before the WC</th>
<th>SL at the WC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET at the training camp</td>
<td>X</td>
<td>0.377</td>
<td>0.498*</td>
<td>0.064</td>
<td>0.491*</td>
</tr>
<tr>
<td>PET before the WC</td>
<td>X</td>
<td>0.353</td>
<td>0.054</td>
<td>0.425</td>
<td></td>
</tr>
<tr>
<td>SL at the training camp</td>
<td>X</td>
<td></td>
<td>0.541*</td>
<td>0.688**</td>
<td></td>
</tr>
<tr>
<td>SL before the WC</td>
<td>X</td>
<td></td>
<td></td>
<td>0.554*</td>
<td></td>
</tr>
<tr>
<td>SL at the WC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

* - p<0.05; ** - p<0.01.
Table 4. Correlations between Energy Potential (EP) and Stress Level (SL) before and in the process of the World Cup (WC) competitions.

<table>
<thead>
<tr>
<th>Indexes</th>
<th>SL at the training camp</th>
<th>SL before the WC</th>
<th>SL at the WC</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP at the training camp</td>
<td>-0.343</td>
<td>-0.290</td>
<td>-0.622**</td>
</tr>
<tr>
<td>EP before the WC</td>
<td>-0.204</td>
<td>-0.620**</td>
<td>-0.495*</td>
</tr>
<tr>
<td>EP at the WC</td>
<td>-0.273</td>
<td>-0.294</td>
<td>-0.699**</td>
</tr>
</tbody>
</table>

* - p<0.05; ** - p<0.01

Table 5. Correlations between competition results and parameters of psycho-physiological condition before and in the process of the World Cup (WC) competitions (11 athletes took part in biathlon and 15 athletes in skiing).

<table>
<thead>
<tr>
<th>Indexes of psycho-physiological condition</th>
<th>Results in the biathlon</th>
<th>Results in skiing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL at the training camp</td>
<td>-0.407</td>
<td>-0.349</td>
</tr>
<tr>
<td>PET before the WC</td>
<td>-0.540</td>
<td>-0.446</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.12.11 Long dist.</td>
<td>17.12.11 Sprint</td>
</tr>
<tr>
<td>SL at the training camp</td>
<td>-0.622*</td>
<td>-0.713**</td>
</tr>
<tr>
<td>SL before the WC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET before the WC</td>
<td>-0.574*</td>
<td>-0.540*</td>
</tr>
</tbody>
</table>

* - p<0.05; ** - p<0.01